

ISSN 2414-3146

Received 22 December 2021 Accepted 17 February 2022

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; hexachloridostannate(IV); pyridinium; X-ray diffraction.

CCDC reference: 2152891

Structural data: full structural data are available from iucrdata.iucr.org

Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate

Rochdi Ghallab,* Hassiba Bougueria and Hocine Merazig

Environmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria. *Correspondence e-mail: rochdi.ghallab@gmail.com

The title hybrid compound, $(C_5H_5N_2Cl_2)_2[SnCl_6]\cdot 2H_2O$, was synthesized and its structure was identified by single-crystal X-ray diffraction. The structure is non-polymeric (0D) in terms of containing isolated $[SnCl_6]^{2-}$ polyhedra. The special position (0,0,0) of the Sn^{IV} atom in the crystal structure gives rise to a stacking structure with alternating cationic and anionic layers parallel to (001). The water molecules are intercalated between these layers, which are linked by cation–anion hydrogen bonds and dominant non-covalent interactions. The stability of the three-dimensional network for this compound is also discussed.

Structure description

Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate, $(C_5H_5N_2Cl_2)_2[SnCl_6]\cdot 2H_2O$, crystallizes in the triclinic space group $P\overline{1}$ (Fig. 1). The tin(IV) atom is hexacoordinated by chlorine atoms, generating a weakly distorted octahedron. The Sn-Cl bond lengths range from 2.4162 (5) to 2.4389 (5) Å while the Cl-Sn-Cl angles have a deviation of about $\pm 1^{\circ}$ [89.277 (19)–90.723 (19)°], see Table 1. These values are comparable to those of the same anion associated with other types of cations (Bouchene *et al.*, 2018). The absence of larger distortions can probably be attributed to the fact that the hexachloridostannate(IV) anions are free, *i.e.* none of the chloride ions are bridging, although they do accept N-H···Cl, O-H···Cl and C-H···Cl hydrogen bonds (Table 2).

In the cation, we note an increase in C1–C2 and C2–Cl4 bond lengths and a decrease in C1–N2 bond lengths (Table 1). This phenomenon is due to resonance-assisted hydrogen bonding, commonly observed for this kind of molecule (Bertolasi *et al.*, 1998). The C–N–C angle is 124.32 (17)°. This large angle can be attributed to the protonation of the N atom. These values are comparable with those of the same cation associated with other types of anions (Ghallab *et al.*, 2020). The intermolecular interactions in the title

Table I			
Selected geometric	e parameters (Å, °)		
Sn1-Cl1	2.4162 (5)	C1-N2	1.315 (3)
Sn1-Cl2	2.4389 (5)	C2-C3	1.356 (3)
Sn1-Cl3	2.4253 (5)	C2-Cl4	1.713 (2)
N1-C1	1.345 (3)	C3-C4	1.393 (3)
N1-C5	1.350 (3)	C4-C5	1.348 (3)
C1-C2	1.417 (3)	C4-Cl5	1.726 (2)
Cl1-Sn1-Cl2	90.722 (19)	N2-C1-N1	119.49 (18)
Cl1 ⁱ -Sn1-Cl2	89.278 (19)	N2 - C1 - C2	124.50 (19)
Cl1-Sn1-Cl2 ⁱ	89.277 (19)	C1 - C2 - Cl4	117.52 (16)
Cl1-Sn1-Cl3	89.906 (19)	C3-C2-C1	120.82 (18)
Cl1-Sn1-Cl3 ⁱ	90.093 (19)	C3 - C2 - Cl4	121.66 (15)
Cl1 ⁱ -Sn1-Cl3	90.093 (19)	C2-C3-C4	119.71 (18)
Cl3 ⁱ -Sn1-Cl2	89.81 (2)	C3-C4-Cl5	120.22 (16)
Cl3-Sn1-Cl2	90.19 (2)	C5-C4-C3	119.70 (19)
Cl3-Sn1-Cl2 ⁱ	89.81 (2)	C5-C4-Cl5	120.08 (18)
C1-N1-C5	124.32 (17)	C4-C5-N1	119.4 (2)
N1-C1-C2	116.00 (18)		

Symmetry code: (i) -x + 2, -y, -z.

compound were analysed using *PLATON* (Spek, 2020), which shows that the structural cohesion in the crystal structure is ensured by $N-H\cdots O$, $N-H\cdots Cl$, $O-H\cdots Cl$ and $C-H\cdots Cl$ hydrogen bonds (Fig. 2*a*, Table 2). We also note the presence of $Cl\cdots Cl$ halogen bonds (Fig. 2*a*), and of π -stacking interactions between centrosymmetrically related aromatic rings of the cations as well as $Y-X\cdots Cg$ interactions (Fig. 2*b*).

Synthesis and crystallization

Tin(II) chloride dihydrate (2.25 mmol) was mixed with 2amino-3,5-dichloropyridine (3.3 mmol) in 1:2 molar ratio and a few drops of hydrochloric acid in an aliquot of distilled water were added. After stirring, the mixture was refluxed for one h at 343 K. After two weeks of slow solvent evaporation, single crystals suitable for X-ray analysis were obtained.

Figure 1

The molecular components in the crystal structure of the title compound, showing displacement ellipsoids at the 30% probability level [symmetry code: (i) -x + 2, -y, -z].

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

, , ,	• • • •			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$ \begin{array}{c} N1 - H1 \cdots O1W \\ O1W - H1WA \cdots Cl1^{ii} \\ O1W - H1WB \cdots Cl2 \\ N2 - H2A \cdots Cl3^{iii} \\ N2 - H2A \cdots O1W \\ N2 - H2B \cdots Cl2^{iv} \\ \end{array} $	0.86 0.85 0.85 0.86 0.86 0.86	1.86 2.67 2.47 2.78 2.38 2.67	2.685 (2) 3.296 (2) 3.301 (2) 3.381 (2) 3.065 (3) 3.435 (2)	160 131 168 129 137 149
$C3-H3\cdots Cl3^{v}$	0.93	2.77	3.695(2)	177
05=115012	0.95	2.60	5.015 (2)	14/

Symmetry codes: (ii) -x + 1, -y, -z; (iii) x, y + 1, z; (iv) -x + 2, -y + 1, -z; (v) x, y + 1, z + 1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

(a) Hydrogen bonds [yellow, purple and violet dashed lines; symmetry codes: (ii) -x + 1, -y, -z; (iii) x, y + 1, z; (iv) -x + 2, -y + 1, -z; (v) x, y + 1, z + 1] and halogen bonds (red dashed lines) in the title compound. (b) A view of the π -stacking interactions [blue dashed lines; symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z] and C-CI···Cg [green dashed lines; symmetry operations: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z] interactions.

Table 3Experimental details.

Crystal data	
Chemical formula	$(C_5H_5Cl_2N_2)_2[SnCl_6]\cdot 2H_2O$
$M_{\rm r}$	695.44
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	7.4624 (2), 8.4715 (2), 10.1324 (2)
α, β, γ (°)	101.434 (1), 90.043 (1), 107.554 (1)
$V(Å^3)$	597.34 (2)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.20
Crystal size (mm)	$0.17 \times 0.13 \times 0.11$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2016)
T_{\min}, T_{\max}	0.716, 0.785
No. of measured, independent and	13446, 3617, 3320
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.017
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.714
Patinement	
$P[F^2 > 2\sigma(F^2)] = P(F^2)$	0.025 0.057 1.02
K[T > 20(T)], WK(T), S	0.025, 0.057, 1.02
No. of peremotors	125
No. of parameters	120
H-atom treatment (-3)	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A^{-5})$	0.43, -0.55

Computer programs: *APEX2* and *SAINT* (Bruker, 2016), *olex2.solve* (Bourhis *et al.*, 2015), *SHELXL* (Sheldrick, 2015) and *OLEX2* (Dolomanov *et al.*, 2009).

Acknowledgements

Thanks are due to DRSDT-Algeria for support.

Funding information

Funding for this research was provided by: Unité de recherche de chimie de l'environnement, moléculaire et structurale 113 UR.CHEMS; Direction Générale de la Recherche Scientifique et du Développement Technologique DGRSDT Algérie.

References

- Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1998). Acta Cryst. B**54**, 50–65.
- Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). *Acta Cryst.* E74, 206–211.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

full crystallographic data

IUCrData (2022). 7, x220191 [https://doi.org/10.1107/S2414314622001912]

Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate

Rochdi Ghallab, Hassiba Bougueria and Hocine Merazig

Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate

Crystal data $(C_5H_5Cl_2N_2)_2[SnCl_6]\cdot 2H_2O$ Z = 1 $M_r = 695.44$ F(000) = 338Triclinic, $P\overline{1}$ $D_{\rm x} = 1.933 {\rm Mg m^{-3}}$ a = 7.4624 (2) Å Mo *K* α radiation, $\lambda = 0.71073$ Å b = 8.4715 (2) Å Cell parameters from 8759 reflections $\theta = 2.9 - 30.9^{\circ}$ c = 10.1324 (2) Å $\alpha = 101.434(1)^{\circ}$ $\mu = 2.20 \text{ mm}^{-1}$ $\beta = 90.043 (1)^{\circ}$ T = 296 K $\gamma = 107.554 (1)^{\circ}$ Block, clear light white V = 597.34 (2) Å³ $0.17 \times 0.13 \times 0.11 \text{ mm}$ Data collection Bruker APEXII CCD 3617 independent reflections diffractometer 3320 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.017$ $\theta_{\rm max} = 30.5^{\circ}, \, \theta_{\rm min} = 3.6^{\circ}$ Absorption correction: multi-scan $h = -10 \rightarrow 10$ (SADABS; Bruker, 2016)

Refinement

 $T_{\rm min} = 0.716, T_{\rm max} = 0.785$

13446 measured reflections

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.057$ S = 1.023617 reflections 125 parameters 0 restraints Primary atom site location: iterative Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0221P)^2 + 0.2999P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.55$ e Å⁻³ Extinction correction: SHELXL (Sheldrick 2015), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0164 (12)

Special details

Refinement. Approximate positions for all H atoms were first obtained from difference Fourier maps. H atoms were then placed in idealized positions and refined using the riding-atom approximation: C-H = 0.93 Å and N-H = 0.86 Å, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms of the water molecule were located in a difference Fourier map and the water molecule geometry was eventually idealized, with O-H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

 $k = -11 \rightarrow 12$

 $l = -14 \rightarrow 14$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	1.000000	0.000000	0.000000	0.03672 (7)	
Cl1	0.75548 (7)	-0.01363 (7)	0.15744 (5)	0.05267 (13)	
Cl2	0.79968 (8)	0.04433 (7)	-0.17040 (5)	0.05363 (13)	
C13	0.87570 (9)	-0.30370 (6)	-0.08206(5)	0.05831 (15)	
O1W	0.6070 (3)	0.3039 (2)	0.02149 (16)	0.0668 (5)	
H1WA	0.488075	0.275909	0.008232	0.100*	
H1WB	0.646535	0.225509	-0.021598	0.100*	
N1	0.6643 (3)	0.3678 (2)	0.29104 (16)	0.0475 (4)	
H1	0.636615	0.323122	0.206756	0.057*	
C1	0.7864 (3)	0.5252 (2)	0.32410 (19)	0.0423 (4)	
C2	0.8268 (3)	0.5946 (2)	0.4640 (2)	0.0440 (4)	
C3	0.7460 (3)	0.5045 (3)	0.55683 (19)	0.0500 (5)	
Н3	0.773367	0.551264	0.648414	0.060*	
C4	0.6218 (3)	0.3417 (3)	0.5144 (2)	0.0485 (5)	
C5	0.5824 (3)	0.2753 (3)	0.3814 (2)	0.0504 (5)	
Н5	0.499435	0.166763	0.352231	0.061*	
N2	0.8609 (3)	0.6033 (3)	0.2280 (2)	0.0635 (5)	
H2A	0.831417	0.553756	0.144754	0.076*	
H2B	0.939027	0.703933	0.248386	0.076*	
Cl4	0.97856 (10)	0.79620 (8)	0.51057 (8)	0.0752 (2)	
C15	0.51633 (12)	0.22629 (11)	0.63144 (8)	0.0814 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.04012 (10)	0.03823 (10)	0.02500 (8)	0.00279 (7)	0.00185 (6)	0.00539 (6)
Cl1	0.0505 (3)	0.0630(3)	0.0385 (2)	0.0095 (2)	0.0146 (2)	0.0090(2)
Cl2	0.0537 (3)	0.0674 (3)	0.0377 (2)	0.0142 (2)	-0.0065 (2)	0.0131 (2)
C13	0.0850 (4)	0.0373 (2)	0.0378 (2)	0.0008 (2)	0.0014 (2)	0.00182 (18)
O1W	0.0687 (10)	0.0721 (11)	0.0450 (8)	0.0080 (8)	-0.0052 (7)	0.0001 (8)
N1	0.0607 (10)	0.0453 (9)	0.0327 (7)	0.0142 (8)	0.0013 (7)	0.0026 (6)
C1	0.0504 (10)	0.0414 (9)	0.0383 (9)	0.0185 (8)	0.0079 (8)	0.0083 (7)
C2	0.0461 (10)	0.0422 (9)	0.0421 (9)	0.0178 (8)	-0.0021 (8)	-0.0014 (8)
C3	0.0571 (12)	0.0667 (13)	0.0328 (8)	0.0331 (10)	-0.0002 (8)	0.0038 (8)
C4	0.0546 (12)	0.0595 (12)	0.0439 (10)	0.0288 (10)	0.0119 (9)	0.0216 (9)
C5	0.0538 (12)	0.0443 (10)	0.0524 (11)	0.0132 (9)	0.0055 (9)	0.0112 (9)
N2	0.0852 (14)	0.0542 (11)	0.0511 (10)	0.0171 (10)	0.0201 (10)	0.0175 (9)
Cl4	0.0688 (4)	0.0496 (3)	0.0897 (5)	0.0096 (3)	-0.0104 (3)	-0.0128 (3)
C15	0.0971 (5)	0.1009 (5)	0.0742 (4)	0.0474 (4)	0.0359 (4)	0.0562 (4)

Geometric parameters (Å, °)

Sn1—Cl1	2.4162 (5)	C1—C2	1.417 (3)
Sn1—Cl1 ⁱ	2.4162 (5)	C1—N2	1.315 (3)
Sn1—Cl2	2.4389 (5)	C2—C3	1.356 (3)

Sm1 C12i	2 4280 (5)	C2 C14	1 712 (2)
SIII—CI2	2.4369 (5)	$C_2 = C_1 4$	1.715(2)
	2.4255 (5)		0.9300
Sn1—Cl3 ¹	2.4253 (5)	C3—C4	1.393 (3)
OIW—HIWA	0.8499	C4—C5	1.348 (3)
O1W—H1WB	0.8496	C4—Cl5	1.726 (2)
N1—H1	0.8600	С5—Н5	0.9300
N1—C1	1.345 (3)	N2—H2A	0.8600
N1—C5	1.350 (3)	N2—H2B	0.8600
Cl1—Sn1—Cl1 ⁱ	180.0	N1—C1—C2	116.00 (18)
Cl1—Sn1—Cl2	90.722 (19)	N2—C1—N1	119.49 (18)
Cl1 ⁱ —Sn1—Cl2	89.278 (19)	N2—C1—C2	124.50 (19)
Cl1—Sn1—Cl2 ⁱ	89.277 (19)	C1—C2—Cl4	117.52 (16)
$Cl1^{i}$ — $Sn1$ — $Cl2^{i}$	90.723 (19)	C3—C2—C1	120.82 (18)
Cl1—Sn1—Cl3	89.906 (19)	C3—C2—Cl4	121.66 (15)
Cl1—Sn1—Cl3 ⁱ	90.093 (19)	С2—С3—Н3	120.1
Cl1 ⁱ —Sn1—Cl3 ⁱ	89.907 (19)	C2—C3—C4	119.71 (18)
Cl1 ⁱ —Sn1—Cl3	90.093 (19)	С4—С3—Н3	120.1
Cl2 ⁱ —Sn1—Cl2	180.0	C3—C4—Cl5	120.22 (16)
Cl3 ⁱ —Sn1—Cl2	89.81 (2)	C5—C4—C3	119.70 (19)
$Cl3^{i}$ — $Sn1$ — $Cl2^{i}$	90.19 (2)	C5—C4—Cl5	120.08 (18)
Cl3—Sn1—Cl2	90.19 (2)	N1—C5—H5	120.3
Cl3—Sn1—Cl2 ⁱ	89.81 (2)	C4—C5—N1	119.4 (2)
Cl3—Sn1—Cl3 ⁱ	180.0	С4—С5—Н5	120.3
H1WA—O1W—H1WB	109.5	C1—N2—H2A	120.0
C1—N1—H1	117.8	C1—N2—H2B	120.0
C1—N1—C5	124.32 (17)	H2A—N2—H2B	120.0
C5—N1—H1	117.8		
N1—C1—C2—C3	0.4 (3)	C5—N1—C1—C2	-0.6(3)
N1—C1—C2—Cl4	-178.93 (15)	C5—N1—C1—N2	178.8 (2)
C1—N1—C5—C4	0.3 (3)	N2—C1—C2—C3	-179.0(2)
C1—C2—C3—C4	0.0 (3)	N2—C1—C2—Cl4	1.7 (3)
C2—C3—C4—C5	-0.3(3)	Cl4—C2—C3—C4	179.31 (16)
C2—C3—C4—C15	-179.42 (16)	Cl5—C4—C5—N1	179.25 (16)
C3—C4—C5—N1	0.1 (3)		X - 7

Symmetry code: (i) -x+2, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1W	0.86	1.86	2.685 (2)	160
O1 <i>W</i> —H1 <i>WA</i> ···Cl1 ⁱⁱ	0.85	2.67	3.296 (2)	131
O1 <i>W</i> —H1 <i>WB</i> ···Cl2	0.85	2.47	3.301 (2)	168
N2—H2A····Cl3 ⁱⁱⁱ	0.86	2.78	3.381 (2)	129
N2—H2 <i>A</i> ···O1 <i>W</i>	0.86	2.38	3.065 (3)	137
N2—H2 <i>B</i> ···Cl4	0.86	2.61	2.986 (2)	108

				data reports
N2—H2 <i>B</i> ····Cl2 ^{iv}	0.86	2.67	3.435 (2)	149
C3—H3…Cl3 ^v	0.93	2.77	3.695 (2)	177
C5—H5····Cl2 ⁱⁱ	0.93	2.80	3.615 (2)	147

Symmetry codes: (ii) -*x*+1, -*y*, -*z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+2, -*y*+1, -*z*; (v) *x*, *y*+1, *z*+1.