

IUCrData

ISSN 2414-3146

Received 12 January 2022 Accepted 18 February 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hexachloridostannate(IV); 4-amidinopyridinium.

CCDC reference: 2153109

Structural data: full structural data are available from iucrdata.iucr.org

4-Amidinopyridinium hexachloridostannate(IV) dihydrate

Rochdi Ghallab,^a* Hassiba Bougueria^b and Hocine Merazig^a

^aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria, and ^bCentre Universitaire Abdelhafid Boussouf - Mila, Algeria. *Correspondence e-mail: rochdi.ghallab@gmail.com

In the title hydrated molecular salt {systematic name: 4-[amino(iminiumyl)-methyl]pyridin-1-ium hexachloridostannate(IV) dihydrate}, $(C_6H_9N_3)[SnCl_6]$ -2H₂O, the tin atom lies on a crystallographic inversion centre and the organic cation shows whole-molecule disorder. Numerous N-H···O, N-H···Cl and O-H···Cl hydrogen bonds link the components in the crystal.

Structure description

The title hydrated molecular salt, with formula $(C_6H_9N_3)$ ·[SnCl₆]·2H₂O, crystallizes in the triclinic space group $P\overline{1}$. The asymmetric unit is constituted by a Sn_{0.5}Cl₃ fragment (Sn site symmetry $\overline{1}$), a 4-amidinopyridinium cation (twice protonated at N1 and N2) and a water molecule, as shown in Fig. 1.

The cation shows whole-molecule disorder about an inversion centre and the water molecule is disordered over adjacent positions $(O \cdots O = 1.13 \text{ Å})$ and there is also static disorder of two of the chloride ions of the anion. With the exception of Cl3, where the occupancy ratio is 0.67/0.33 (for Cl3*A*/Cl3*B*), each disordered atom is shared between two crystallographic sites with occupancies of 0.50. There are no abnormalities in the bond lengths and angles and they are comparable to those of similar types (Liu *et al.*, 2011; Ghallab *et al.*, 2020).

In the extended structure, cationic and anionic layers occur, with water molecules intercalating between them as shown in the projection of the structure onto the ac and bc planes (Figs. 2 and 3). Cohesion in the crystal is ensured by numerous hydrogen bonds (Table 1).

data reports

Figure 1

The molecular structure showing 30% displacement ellipsoids.

Synthesis and crystallization

Following the method of preparation described in the literature (Bouchene et al., 2018), the compound was synthesized via the aqueous technique. A millimeter-sized transparent crystal was formed after three months of slow evaporation at ambient temperature.

Figure 2 Projection of the crystal packing on the ac plane.

Figure 3

Projection of the crystal packing on the bc plane.

Table 1 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O1WA^{i}$	0.86	1.96	2.760 (15)	154
$N1-H1\cdots O1WB^{i}$	0.86	1.87	2.649 (15)	149
$N2-H2A\cdots Cl2^{ii}$	0.86	2.68	3.431 (11)	147
$N3-H3A\cdotsO1WA^{iii}$	0.86	2.13	2.961 (16)	162
$N3-H3A\cdotsO1WB^{iii}$	0.86	1.96	2.795 (16)	163
N3-H3 B ···Cl1 A ^{iv}	0.86	2.69	3.093 (16)	110
$N3-H3B\cdots Cl3B^{iv}$	0.86	2.56	3.420 (16)	175
$O1WA - H1WA \cdots Cl2^{v}$	0.85	2.77	3.415 (8)	134
$O1WA - H1WB \cdots Cl3A^{vi}$	0.85	2.41	3.154 (9)	147
$O1WB$ -H1 WC ···Cl1 A^{v}	0.85	2.60	3.305 (10)	142
$O1WB - H1WC \cdots Cl1B^{v}$	0.85	2.36	3.085 (10)	144
O1WB-H1WC···Cl1A ^{vii}	0.85	2.69	3.251 (12)	124
$O1WB - H1WC \cdot \cdot \cdot Cl1B^{vii}$	0.85	2.83	3.396 (13)	126
$C1-H1A\cdots Cl3A^{viii}$	0.93	2.67	3.561 (17)	161
$C1-H1A\cdots Cl3B^{viii}$	0.93	2.43	3.356 (17)	174
$C5-H5\cdots Cl1A^{vii}$	0.93	2.80	3.674 (12)	157
$C5-H5\cdots Cl1B^{vii}$	0.93	2.56	3.385 (12)	149

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The disordered atoms were treated with constraints on distances and angles (by the SAME command and PART options). With the exception of Cl3, where the ratio is 0.67/0.33, each disordered atom is shared between two crystallographic sites with occupancy rates of 0.50.

Table 2

Experimental details.

Crystal data	
Chemical formula	$(C_6H_9N_3)[SnCl_6]\cdot 2H_2O$
M _r	490.58
Crystal system, space group	Triclinic, P1
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.4224 (13), 7.4518 (11), 8.4986 (16)
α, β, γ (°)	105.726 (7), 97.426 (9), 112.383 (7)
$V(\dot{A}^3)$	403.85 (12)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.57
Crystal size (mm)	$0.17 \times 0.13 \times 0.11$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.676, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10469, 2442, 1889
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.085, 1.15
No. of reflections	2442
No. of parameters	154
No. of restraints	53
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	1.22, -1.35

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

Thanks are due to DRSDT-Algeria for support.

Funding information

Funding for this research was provided by: Unité de recherche de chimie de l'environnement, moléculaire et structurale UR.CHEMS; Direction Générale de la Recherche Scientifique et du Developpement Technologique DGRSDT Algérie. References

- Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E**76**, 1279–1283.
- Liu, F., Zhang, F., Chen, Q. & Zhang, H. (2011). Acta Cryst. E67, 0781.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2022). 7, x220195 [https://doi.org/10.1107/S241431462200195X]

4-Amidinopyridinium hexachloridostannate(IV) dihydrate

Rochdi Ghallab, Hassiba Bougueria and Hocine Merazig

4-[Amino(iminiumyl)methyl]pyridin-1-ium hexachloridostannate(IV) dihydrate

Crystal data $(C_6H_9N_3)[SnCl_6]\cdot 2H_2O$ $M_r = 490.58$ Triclinic, $P\overline{1}$ a = 7.4224 (13) Åb = 7.4518 (11) Å c = 8.4986 (16) Å $\alpha = 105.726 (7)^{\circ}$ $\beta = 97.426 \ (9)^{\circ}$ $\gamma = 112.383 (7)^{\circ}$ $V = 403.85 (12) \text{ Å}^3$

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\rm min} = 0.676, T_{\rm max} = 0.754$ 10469 measured reflections

Refinement

Refinement on F^2 Primary atom site location: iterative Least-squares matrix: full Hydrogen site location: mixed $R[F^2 > 2\sigma(F^2)] = 0.046$ H-atom parameters constrained $wR(F^2) = 0.085$ S = 1.15where $P = (F_0^2 + 2F_c^2)/3$ 2442 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.22 \text{ e } \text{\AA}^{-3}$ 154 parameters 53 restraints $\Delta \rho_{\rm min} = -1.35 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 1F(000) = 238 $D_{\rm x} = 2.017 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1889 reflections $\theta = 5.0 - 30.5^{\circ}$ $\mu = 2.57 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.17 \times 0.13 \times 0.11 \text{ mm}$

2442 independent reflections 1889 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$ $\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 5.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -12 \rightarrow 12$

 $w = 1/[\sigma^2(F_o^2) + (0.0167P)^2 + 0.8036P]$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	0.000000	0.500000	0.500000	0.04673 (15)	
C12	-0.0563(2)	0.39683 (16)	0.19228 (11)	0.0675 (4)	
Cl1B	0.2964 (10)	0.7987 (8)	0.5355 (8)	0.0640 (13)	0.5
Cl3B	0.2133 (9)	0.3209 (8)	0.5250 (8)	0.0607 (14)	0.33
Cl1A	0.3472 (10)	0.7539 (8)	0.5316 (7)	0.0612 (12)	0.5
Cl3A	0.1294 (5)	0.2493 (4)	0.4986 (4)	0.0711 (9)	0.67
C3	0.470 (3)	1.475 (3)	0.998 (2)	0.039 (3)	0.5
C4	0.5060 (13)	1.6621 (11)	1.1133 (9)	0.0462 (19)	0.5
H4	0.465642	1.667299	1.212925	0.055*	0.5
C5	0.5998 (16)	1.8390 (14)	1.0820 (13)	0.062 (2)	0.5
Н5	0.618436	1.965008	1.157590	0.074*	0.5
N1	0.666 (2)	1.8325 (16)	0.9421 (16)	0.081 (3)	0.5
H1	0.734961	1.946420	0.927815	0.097*	0.5
C1	0.625 (3)	1.6494 (18)	0.8222 (18)	0.088 (5)	0.5
H1A	0.661958	1.646634	0.721374	0.105*	0.5
C2	0.5291 (16)	1.4684 (15)	0.8517 (10)	0.059 (2)	0.5
H2	0.504299	1.342167	0.772395	0.071*	0.5
C6	0.3621 (14)	1.2750 (14)	1.0199 (13)	0.053 (2)	0.5
N2	0.227 (2)	1.1247 (14)	0.8868 (15)	0.099 (4)	0.5
H2A	0.153059	1.008127	0.895028	0.119*	0.5
H2B	0.211066	1.142421	0.790976	0.119*	0.5
N3	0.397 (2)	1.2666 (18)	1.1621 (18)	0.089 (5)	0.5
H3A	0.329233	1.154902	1.180199	0.106*	0.5
H3B	0.488756	1.372373	1.243683	0.106*	0.5
O1WA	0.0858 (13)	1.8847 (11)	1.1795 (10)	0.069 (2)	0.5
H1WA	0.119362	1.785736	1.167388	0.103*	0.5
H1WB	0.101422	1.945036	1.284078	0.103*	0.5
O1WB	0.2372 (18)	1.8798 (12)	1.1997 (9)	0.091 (3)	0.5
H1WC	0.297336	1.913349	1.302646	0.137*	0.5
H1WD	0.110355	1.828348	1.187657	0.137*	0.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0750 (3)	0.02256 (16)	0.02323 (16)	0.00466 (17)	0.00409 (16)	0.00756 (12)
Cl2	0.1091 (10)	0.0438 (5)	0.0264 (4)	0.0154 (6)	0.0077 (5)	0.0086 (4)
Cl1B	0.064 (3)	0.046 (2)	0.0547 (17)	-0.0007 (15)	-0.0018 (17)	0.0211 (17)
Cl3B	0.067 (4)	0.051 (3)	0.056 (2)	0.025 (2)	-0.004(2)	0.019 (2)
Cl1A	0.072 (3)	0.0429 (19)	0.0492 (14)	0.0061 (14)	0.0161 (18)	0.0157 (13)
Cl3A	0.111 (3)	0.0488 (14)	0.0504 (13)	0.0290 (14)	0.0200 (16)	0.0222 (12)
C3	0.041 (10)	0.040 (8)	0.038 (3)	0.018 (7)	0.013 (5)	0.018 (4)
C4	0.057 (5)	0.041 (4)	0.033 (3)	0.014 (4)	0.012 (3)	0.013 (3)
C5	0.058 (6)	0.048 (5)	0.073 (6)	0.019 (5)	0.020 (5)	0.017 (4)
N1	0.096 (9)	0.065 (6)	0.116 (9)	0.038 (6)	0.054 (8)	0.064 (7)
C1	0.137 (12)	0.087 (9)	0.092 (9)	0.067 (10)	0.081 (8)	0.058 (8)

data reports

C2	0.083 (7)	0.075 (6)	0.039 (4)	0.053 (6)	0.023 (4)	0.017 (4)
C6	0.049 (6)	0.045 (4)	0.064 (6)	0.019 (4)	0.018 (5)	0.020 (4)
N2	0.120 (10)	0.042 (4)	0.094 (8)	0.009 (6)	0.017 (7)	0.005 (5)
N3	0.094 (9)	0.045 (6)	0.092 (9)	-0.005 (6)	-0.006 (7)	0.037 (6)
O1WA	0.094 (6)	0.049 (4)	0.053 (4)	0.014 (4)	0.029 (4)	0.023 (3)
O1WB	0.133 (8)	0.045 (4)	0.044 (4)	-0.006 (5)	-0.005 (5)	0.018 (3)

Geometric parameters (Å, °)

Sn1—Cl2	2.4470 (10)	C3—C4	1.372 (15)
Sn1—Cl2 ⁱ	2.4470 (10)	C3—C2	1.366 (15)
Sn1—Cl1B ⁱ	2.371 (6)	C3—C6	1.48 (2)
Sn1—Cl1B	2.371 (6)	C4—C5	1.354 (10)
Sn1—Cl3B ⁱ	2.451 (7)	C5—N1	1.339 (11)
Sn1—Cl3B	2.451 (7)	N1	1.358 (12)
Sn1—Cl1A	2.475 (7)	C1—C2	1.374 (12)
Sn1—Cl1A ⁱ	2.475 (7)	C6—N2	1.306 (14)
Sn1—Cl3A ⁱ	2.402 (4)	C6—N3	1.226 (16)
Sn1—Cl3A	2.402 (4)		
Cl2—Sn1—Cl2 ⁱ	180.0	Cl1B—Sn1—Cl3A ⁱ	78.11 (14)
Cl2—Sn1—Cl3B ⁱ	87.17 (16)	Cl3B—Sn1—Cl3B ⁱ	180.0
$C12^{i}$ — $Sn1$ — $C13B^{i}$	92.83 (16)	Cl3B—Sn1—Cl1A ⁱ	105.72 (16)
Cl2—Sn1—Cl3B	92.83 (16)	Cl3B ⁱ —Sn1—Cl1A ⁱ	74.28 (16)
Cl2 ⁱ —Sn1—Cl3B	87.17 (16)	Cl3A—Sn1—Cl2	89.55 (8)
Cl2 ⁱ —Sn1—Cl1A	90.98 (14)	Cl3A ⁱ —Sn1—Cl2	90.45 (8)
Cl2—Sn1—Cl1A	89.02 (14)	Cl3A—Sn1—Cl1A	88.16 (12)
Cl2—Sn1—Cl1A ⁱ	90.98 (14)	Cl3A ⁱ —Sn1—Cl1A	91.84 (12)
Cl2 ⁱ —Sn1—Cl1A ⁱ	89.02 (14)	Cl3A ⁱ —Sn1—Cl3A	180.0
Cl1B—Sn1—Cl2 ⁱ	89.79 (15)	C4—C3—C6	123.3 (12)
Cl1B—Sn1—Cl2	90.21 (15)	C2—C3—C4	119.7 (15)
Cl1B ⁱ —Sn1—Cl2	89.79 (15)	C2—C3—C6	117.0 (12)
Cl1B ⁱ —Sn1—Cl2 ⁱ	90.21 (15)	C5—C4—C3	120.1 (10)
Cl1B ⁱ —Sn1—Cl1B	180.0	N1C5C4	120.0 (9)
Cl1B—Sn1—Cl3B	87.92 (17)	C5—N1—C1	121.3 (9)
Cl1B ⁱ —Sn1—Cl3B	92.08 (17)	N1—C1—C2	119.2 (10)
Cl1B ⁱ —Sn1—Cl3B ⁱ	87.92 (17)	C3—C2—C1	119.5 (11)
Cl1B—Sn1—Cl3B ⁱ	92.08 (17)	N2—C6—C3	116.5 (11)
Cl1B—Sn1—Cl1A ⁱ	166.23 (14)	N3—C6—C3	118.0 (11)
Cl1B ⁱ —Sn1—Cl1A ⁱ	13.77 (14)	N3—C6—N2	125.4 (11)
Cl1B ⁱ —Sn1—Cl3A ⁱ	101.89 (14)		
C5—N1—C1—C2	-6 (3)	C2—C3—C6—N2	-42 (2)
C1—N1—C5—C4	6 (2)	C2-C3-C6-N3	142.5 (16)
N1—C1—C2—C3	2 (3)	C4—C3—C6—N2	135.9 (17)
C1—C2—C3—C4	0 (3)	C4—C3—C6—N3	-40 (3)

data reports

C1—C2—C3—C6	178.1 (16)	C2—C3—C4—C5	0 (3)
C6—C3—C4—C5	-177.7 (14)	C3—C4—C5—N1	-3 (2)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N1—H1···O1 <i>WA</i> ⁱⁱ	0.86	1.96	2.760 (15)	154
N1—H1···O1 WB^{ii}	0.86	1.87	2.649 (15)	149
N2—H2A····Cl2 ⁱ	0.86	2.68	3.431 (11)	147
N3—H3 A ···O1 WA^{iii}	0.86	2.13	2.961 (16)	162
N3—H3 A ···O1 WB^{iii}	0.86	1.96	2.795 (16)	163
N3—H3 B ···Cl1 A^{iv}	0.86	2.69	3.093 (16)	110
N3—H3 B ···Cl3 B^{iv}	0.86	2.56	3.420 (16)	175
$O1WA$ — $H1WA$ ··· $Cl2^{v}$	0.85	2.77	3.415 (8)	134
$O1WA$ — $H1WB$ ···· $Cl3A^{vi}$	0.85	2.41	3.154 (9)	147
$O1WB$ — $H1WC$ ··· $Cl1A^{\vee}$	0.85	2.60	3.305 (10)	142
$O1WB$ — $H1WC$ ··· $C11B^{\vee}$	0.85	2.36	3.085 (10)	144
O1 <i>WB</i> —H1 <i>WC</i> ···Cl1A ^{vii}	0.85	2.69	3.251 (12)	124
$O1WB$ — $H1WC$ ··· $C11B^{vii}$	0.85	2.83	3.396 (13)	126
C1—H1A····Cl3A ^{viii}	0.93	2.67	3.561 (17)	161
C1—H1 A ···Cl3 B^{viii}	0.93	2.43	3.356 (17)	174
C5—H5····Cl1A ^{vii}	0.93	2.80	3.674 (12)	157
C5—H5····Cl1 <i>B</i> ^{vii}	0.93	2.56	3.385 (12)	149

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+4, -*z*+2; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*+2, -*z*+2; (v) *x*, *y*+1, *z*+1; (vi) *x*, *y*+2, *z*+1; (vii) -*x*+1, -*y*+3, -*z*+2; (viii) -*x*+1, -*y*+2, -*z*+1.