

ISSN 2414-3146

Received 17 February 2022 Accepted 19 March 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; organic co-crystal; vanillic acid; bipyridine ethylene.

CCDC reference: 2160226

Structural data: full structural data are available from iucrdata.iucr.org

## 1,2-Bis(pyridin-4-yl)ethene-4-hydroxy-3-methoxybenzoic acid (1/1)

Devin J. Angevine and Jason B. Benedict\*

Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260-3000, USA. \*Correspondence e-mail: jbb6@buffalo.edu

In the title 1:1 co-crystal [alternatively called bipyridine ethylene–*p*-vanillic acid (1/1)],  $C_{12}H_{10}N_2 \cdot C_8H_8O_4$ , the dihedral angle between the pyridine rings is 59.51 (5)°. In the crystal, the molecules are linked by  $O-H \cdot \cdot \cdot N$  hydrogen bonds, generating [401] chains of alternating  $C_{12}H_{10}N_2$  and  $C_8H_8O_4$  molecules.



#### Structure description

4-Hydroxy-3-methoxybenzoic acid,  $C_8H_8O_4$ , known commonly as *p*-vanillic acid, is used as a flavoring agent and naturally found in a variety of fruits and edible plants (Ingole *et al.*, 2021). In addition, *p*-vanillic acid is currently being investigated for its inflammatory pain-inhibiting properties (Calixto-Campos *et al.*, 2015). Despite the prevalence of the molecule in our foods and its potential medicinal benefits, structural information on vanillic acid is sparse with few crystal structures being reported thus far. As such it is crucial to expand the number of structures containing vanillic acid in order to better understand the non-covalent interactions involving this molecule. Bipyridine ethylene ( $C_{12}H_{10}N_2$ ; BPyE) was selected as a suitable coformer for the present study because of its ability to form both simple and complex hydrogen-bonded networks with organic acids (Delori *et al.*, 2013; Bhattacharya *et al.*, 2013).

When *p*-vanillic acid is combined with BPyE in a 1:1 molar ratio, the resulting 1:1 cocrystal possesses monoclinic  $(P2_1/c)$  symmetry at 90 K. The vanillic acid has two distinct  $O-H\cdots N$ -type hydrogen-bonding interactions (Table 1); one of these involves the carboxylic acid group and a BPyE N atom acceptor and resulting in a 2.6295 (12) Å distance between heteroatoms (Fig. 1). The other hydrogen bond occurs between the *para*-position hydroxyl group and the other pyridine N atom of a BPyE molecule resulting in a 2.6868 (13) Å distance between heteroatoms (Fig. 2). The co-crystal structure may be described as dimolecular units made up of one acid plus one coformer, which form  $C_2^2(19)$  chain motifs. These chains propagate in the [401] direction, forming





Figure 1

A bimolecular unit consisting of p-vanillic acid and BPyE with the hydrogen bond depicted as a blue dashed line. The BPyE molecule illustrated is generated by the symmetry operation x - 1, y, z from the asymmetric molecule.

twisting wires (Fig. 3). The wires stack along [010], forming sheets, which subsequently form layers parallel to  $(10\overline{4})$ , with every other sheet being rotated 180° about [010]. Two weak  $C-H \cdots O$  contacts are also observed (Table 1).

#### Synthesis and crystallization

A 1:1 molar ratio of bipyridine ethylene (182.2 mg, 1 mmol) and p-vanillic acid (168.1 mg, 1 mmol) was added to a 25 ml scintillation vial to which methanol was added until both compounds dissolved (approximately 20 ml). The resulting solution was vortexed for 30 s at 3000 rpm on a VWR Mini Vortexer MV I. The solution was then stored in the dark uncapped to allow for crystal formation while the solvent slowly evaporated.

#### Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.



Figure 2

Part of a [401] hydrogen-bonded chain of p-vanillic acid and BPyE molecules. The O···N distances are shown for each O-H···N hydrogenbonding interaction.

| Table 1                        |  |
|--------------------------------|--|
| Hydrogen-bond geometry (Å, °). |  |

| $D - H \cdots A$                                                                           | D-H      | H···A    | $D \cdots A$ | $D - H \cdots A$ |
|--------------------------------------------------------------------------------------------|----------|----------|--------------|------------------|
| $O1-H1\cdots N1^{i}$ $O4-H4\cdots N2^{ii}$ $C4-H4A\cdots O2^{iii}$ $C4-H4A\cdots O2^{iii}$ | 0.99 (2) | 1.65 (2) | 2.6295 (12)  | 169 (2)          |
|                                                                                            | 0.92 (2) | 1.84 (2) | 2.6868 (13)  | 154 (2)          |
|                                                                                            | 0.95     | 2.53     | 3.2341 (14)  | 132              |

Symmetry codes: (i) x - 1, y, z; (ii)  $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (iii)  $-x, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (iv)  $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$ 

| Table  | 2      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                       |                                      |
|------------------------------------|--------------------------------------|
| Chemical formula                   | $C_{12}H_{10}N_2 \cdot C_8H_8O_4$    |
| Mr                                 | 350.36                               |
| Crystal system, space group        | Monoclinic, $P2_1/c$                 |
| Temperature (K)                    | 90                                   |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 9.1486 (5), 9.2114 (5), 20.3429 (12) |
| β (°)                              | 98.416 (1)                           |
| $V(\dot{A}^3)$                     | 1695.86 (16)                         |
| Ζ                                  | 4                                    |
| Radiation type                     | Μο Κα                                |
| $\mu \text{ (mm}^{-1})$            | 0.10                                 |
| Crystal size (mm)                  | $0.54 \times 0.22 \times 0.02$       |
| Data collection                    |                                      |
| Diffractometer                     | Bruker APEXII CCD                    |
| Absorption correction              | Multi-scan (SADABS; Bruker,          |
|                                    | 2016)                                |
| $T_{\min}, T_{\max}$               | 0.648, 0.746                         |
| No. of measured, independent and   | 33598, 5958, 4683                    |

0.084

0.748

5958

0.047, 0.131, 1.03

Ν observed  $[I > 2\sigma(I)]$  reflections  $R_{\rm int}$ 

 $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$ 

 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$ 

Refinement  $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment

245 H atoms treated by a mixture of independent and constrained refinement 0.40, -0.26

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick 2015b), and OLEX2 (Dolomanov et al., 2009).



Figure 3

plane depicting twisting hydrogen-bonded wires running approximately parallel to (104). Hydrogen-bonding interactions are depicted as brightblue dashed lines.

### **Funding information**

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

#### References

- Bhattacharya, S., Stojaković, J., Saha, B. K. & MacGillivray, L. R. (2013). Org. Lett. 15, 744–747.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calixto-Campos, C., Carvalho, T. T., Hohmann, M. S. N., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R. & Verri, W. A. (2015). J. Nat. Prod. **78**, 1799–1808.
- Delori, A., Eddleston, M. D. & Jones, W. (2013). *CrystEngComm*, **15**, 73–77.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ingole, A., Kadam, M., Dalu, A., Kute, S., Mange, P., Theng, V., Lahane, R., Nikas, A., Kawal, Y., Nagrik, S. & Patil, P. (2021). J. Drug. Deliv. Ther. 11, 200–204.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

# full crystallographic data

## *IUCrData* (2022). 7, x220304 [https://doi.org/10.1107/S2414314622003042]

## 1,2-Bis(pyridin-4-yl)ethene–4-hydroxy-3-methoxybenzoic acid (1/1)

F(000) = 736

 $\theta = 2.4 - 32.1^{\circ}$  $\mu = 0.10 \text{ mm}^{-1}$ 

T = 90 K

 $R_{\rm int} = 0.084$ 

 $h = -13 \rightarrow 13$  $k = -13 \rightarrow 13$  $l = -30 \rightarrow 30$ 

 $D_{\rm x} = 1.372 {\rm Mg m^{-3}}$ 

Plate, clear colourless

 $0.54 \times 0.22 \times 0.02 \text{ mm}$ 

 $\theta_{\text{max}} = 32.1^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ 

5958 independent reflections 4683 reflections with  $I > 2\sigma(I)$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 5974 reflections

## Devin J. Angevine and Jason B. Benedict

1,2-Bis(pyridin-4-yl)ethene; 4-hydroxy-3-methoxybenzoic acid

Crystal data

 $C_{12}H_{10}N_2 \cdot C_8H_8O_4$   $M_r = 350.36$ Monoclinic,  $P2_1/c$  a = 9.1486 (5) Å b = 9.2114 (5) Å c = 20.3429 (12) Å  $\beta = 98.416 (1)^\circ$   $V = 1695.86 (16) \text{ Å}^3$ Z = 4

## Data collection

| Bruker APEXII CCD                      |
|----------------------------------------|
| diffractometer                         |
| $\varphi$ and $\omega$ scans           |
| Absorption correction: multi-scan      |
| (SADABS; Bruker, 2016)                 |
| $T_{\min} = 0.648, \ T_{\max} = 0.746$ |
| 33598 measured reflections             |

## Refinement

| Refinement on $F^2$              | H stoms treated by a mixture of independent                |
|----------------------------------|------------------------------------------------------------|
| $\frac{1}{1}$                    | If atoms treated by a mixture of independent               |
| Least-squares matrix: full       | and constrained refinement                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.047$  | $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2 + 0.6347P]$          |
| $wR(F^2) = 0.131$                | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.03                         | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 5958 reflections                 | $\Delta  ho_{ m max} = 0.40$ e Å <sup>-3</sup>             |
| 245 parameters                   | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ |
| 0 restraints                     | Extinction correction: SHELXL2018/3                        |
| Primary atom site location: dual | (Sheldrick 2015b),                                         |
| Hydrogen site location: mixed    | $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$    |
|                                  | Extinction coefficient: 0.0070 (15)                        |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. The O-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were placed geometrically (C—H = 0.95–0.98 Å) and refined as riding atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ .

|                 | x             | v                          | Z                        | $U_{\rm iso}*/U_{\rm eg}$ |
|-----------------|---------------|----------------------------|--------------------------|---------------------------|
| $\overline{03}$ | 0 43471 (9)   | 0 32423 (9)                | 0 77939 (4)              | 0.01865 (17)              |
| 02              | -0.05986(9)   | 0.32125(9)<br>0.39976(10)  | 0.62580 (4)              | 0.01877 (17)              |
| 04              | 0 41561 (9)   | 0 50304 (10)               | 0.88365 (4)              | 0.02072 (18)              |
| 01              | -0.17538(9)   | 0.55862 (10)               | 0.68391 (4)              | 0.02072(10)               |
| N1              | 0 58124 (10)  | 0.39002(10)<br>0.49305(11) | 0.60383(5)               | 0.01647 (18)              |
| N2              | -0.30499(10)  | 0.09310(11)                | 0.39212 (5)              | 0.0198 (2)                |
| C11             | 0 30840 (11)  | 0.38151(12)                | 0.59212(5)<br>0.54449(5) | 0.01433(19)               |
| C5              | 0.30531 (11)  | 0.49848(12)                | 0.83165 (5)              | 0.01447 (19)              |
| C1              | -0.06039(11)  | 0.47842 (12)               | 0.67408 (5)              | 0.01454 (19)              |
| C2              | 0.06755 (11)  | 0.49121 (12)               | 0.72818 (5)              | 0.01337 (19)              |
| C3              | 0.06593 (11)  | 0.58633 (12)               | 0.78115 (5)              | 0.01466 (19)              |
| H3              | -0.016259     | 0.648781                   | 0.782394                 | 0.018*                    |
| C7              | 0.19036 (11)  | 0.40137 (12)               | 0.72604 (5)              | 0.01356 (19)              |
| H7              | 0.192506      | 0.337576                   | 0.689504                 | 0.016*                    |
| C16             | -0.01655 (11) | 0.18988 (12)               | 0.43775 (5)              | 0.01485 (19)              |
| C12             | 0.44140 (11)  | 0.31630 (12)               | 0.53464 (5)              | 0.0158 (2)                |
| H12             | 0.441106      | 0.232395                   | 0.507463                 | 0.019*                    |
| C6              | 0.30870 (11)  | 0.40521 (12)               | 0.77703 (5)              | 0.01375 (19)              |
| С9              | 0.45404 (12)  | 0.55722 (13)               | 0.61287 (5)              | 0.0171 (2)                |
| Н9              | 0.458134      | 0.641952                   | 0.639702                 | 0.021*                    |
| C10             | 0.31694 (11)  | 0.50520 (12)               | 0.58473 (5)              | 0.0154 (2)                |
| H10             | 0.229348      | 0.553233                   | 0.592721                 | 0.019*                    |
| C13             | 0.57369 (11)  | 0.37518 (13)               | 0.56488 (5)              | 0.0164 (2)                |
| H13             | 0.663253      | 0.329869                   | 0.557653                 | 0.020*                    |
| C15             | 0.13307 (11)  | 0.24385 (13)               | 0.46164 (5)              | 0.0163 (2)                |
| H15             | 0.210971      | 0.220751                   | 0.437269                 | 0.020*                    |
| C4              | 0.18456 (11)  | 0.58996 (12)               | 0.83222 (5)              | 0.0158 (2)                |
| H4A             | 0.183227      | 0.655853                   | 0.868048                 | 0.019*                    |
| C20             | -0.06769 (12) | 0.17485 (13)               | 0.36998 (5)              | 0.0172 (2)                |
| H20             | -0.004731     | 0.196381                   | 0.338053                 | 0.021*                    |
| C14             | 0.16281 (11)  | 0.32450 (13)               | 0.51668 (5)              | 0.0163 (2)                |
| H14             | 0.082548      | 0.346774                   | 0.539750                 | 0.020*                    |
| C17             | -0.11344 (12) | 0.15200 (13)               | 0.48206 (6)              | 0.0180 (2)                |
| H17             | -0.083003     | 0.159193                   | 0.528642                 | 0.022*                    |
| C18             | -0.25442 (12) | 0.10380 (13)               | 0.45737 (6)              | 0.0192 (2)                |
| H18             | -0.318447     | 0.077004                   | 0.488118                 | 0.023*                    |
| C19             | -0.21164 (12) | 0.12807 (13)               | 0.34974 (6)              | 0.0199 (2)                |
| H19             | -0.245544     | 0.120512                   | 0.303447                 | 0.024*                    |
| C8              | 0.44161 (13)  | 0.22430 (14)               | 0.72620 (6)              | 0.0221 (2)                |
| H8A             | 0.430464      | 0.277176                   | 0.683957                 | 0.033*                    |
| H8B             | 0.361902      | 0.152884                   | 0.725170                 | 0.033*                    |
| H8C             | 0.537185      | 0.174302                   | 0.732989                 | 0.033*                    |
| H4              | 0.499 (2)     | 0.458 (3)                  | 0.8743 (11)              | 0.055 (6)*                |
| H1              | -0.259 (3)    | 0.528 (3)                  | 0.6504 (12)              | 0.066 (7)*                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# data reports

Atomic displacement parameters  $(Å^2)$  $U^{11}$  $U^{22}$  $U^{33}$  $U^{12}$  $U^{13}$  $U^{23}$ O3 0.0149(3) 0.0218 (4) 0.0183 (4) 0.0073(3)-0.0006(3)-0.0023(3)O2 0.0165 (4) 0.0236 (4) 0.0156 (4) 0.0004(3)0.0004(3)-0.0028(3)04 0.0136 (4) 0.0285 (5) 0.0181 (4) 0.0034 (3) -0.0043(3)-0.0043(3)01 0.0116(3)0.0257 (4) 0.0226(4)0.0033(3)-0.0031(3)-0.0063(3)N1 0.0135 (4) 0.0191 (5) 0.0156 (4) -0.0005(3)-0.0016(3)0.0012(3)N2 0.0141(4)0.0209 (5) 0.0229 (5) -0.0007(3)-0.0020(3)-0.0022(4)C11 0.0129 (4) 0.0171 (5) 0.0125(4)0.0002(4)0.0003(3)0.0012(4)C5 0.0123(4)0.0148(4)-0.0010(3)0.0006(3)0.0010(4)0.0158(5)C1 0.0119 (4) 0.0157 (4) -0.0006(3)0.0012(3)0.0016 (4) 0.0158(5)C2 0.0107(4)0.0147(5)0.0144(4)-0.0004(3)0.0005(3)0.0009(3)C3 0.0118(4)0.0152(5)0.0167(4)0.0017(3)0.0010(3)-0.0003(4)C7 0.0142 (5) 0.0134 (4) -0.0001(3)0.0002 (3) 0.0131 (4) 0.0021 (3) C16 0.0125 (4) 0.0154 (5) 0.0159 (4) 0.0013 (3) -0.0004(3)-0.0015(4)C12 0.0138(4)0.0172(5)0.0156 (4) 0.0015(4)-0.0004(3)-0.0020(4)0.0018 (3) C6 0.0115 (4) 0.0142 (5) 0.0154 (4) 0.0015(3)0.0016(4)C9 0.0164(5)0.0181 (5) 0.0158 (5) 0.0005(4)-0.0010(4)-0.0012(4)C10 0.0126(4)0.0189(5)0.0145(4)0.0015(4)0.0008(3)-0.0011(4)C13 0.0009(4)0.0120(4)0.0199(5)0.0166(5)0.0021(4)0.0000(3)C15 0.0119 (4) 0.0201 (5) 0.0164(5)0.0002(4)0.0008(3)0.0002(4)C4 -0.0030(4)0.0135(4)0.0176 (5) 0.0160(4)0.0002(4)0.0015(3)C20 0.0161 (5) 0.0187(5)0.0164(5)-0.0001(4)0.0010(4)-0.0027(4)C14 0.0117 (4) 0.0197 (5) 0.0169 (5) 0.0002 (4) 0.0008 (3) -0.0007(4)C17 0.0146 (4) 0.0222(5)0.0165 (5) -0.0008(4)0.0001 (4) 0.0001 (4) C18 -0.0008(4)0.0018 (4) 0.0000(4)0.0135(5)0.0221(5)0.0218(5)0.0180 (5) C19 0.0174 (5) 0.0226 (6) -0.0005(4)-0.0029(4)-0.0035(4)

0.0198 (5)

Geometric parameters (Å, °)

0.0230 (5)

0.0235 (6)

C8

| O3—C6   | 1.3680 (12) | C16—C15 | 1.4705 (15) |
|---------|-------------|---------|-------------|
| O3—C8   | 1.4292 (14) | C16—C20 | 1.3963 (15) |
| O2—C1   | 1.2211 (13) | C16—C17 | 1.3979 (15) |
| O4—C5   | 1.3516 (12) | C12—H12 | 0.9500      |
| O4—H4   | 0.92 (2)    | C12—C13 | 1.3854 (15) |
| 01—C1   | 1.3243 (13) | С9—Н9   | 0.9500      |
| 01—H1   | 0.99 (2)    | C9—C10  | 1.3858 (15) |
| N1—C9   | 1.3417 (14) | C10—H10 | 0.9500      |
| N1—C13  | 1.3400 (15) | C13—H13 | 0.9500      |
| N2—C18  | 1.3439 (15) | C15—H15 | 0.9500      |
| N2—C19  | 1.3386 (16) | C15—C14 | 1.3379 (15) |
| C11—C12 | 1.3975 (15) | C4—H4A  | 0.9500      |
| C11—C10 | 1.3984 (15) | C20—H20 | 0.9500      |
| C11—C14 | 1.4661 (14) | C20—C19 | 1.3895 (15) |
| C5—C6   | 1.4083 (15) | C14—H14 | 0.9500      |
| C5—C4   | 1.3908 (15) | C17—H17 | 0.9500      |
|         |             |         |             |

0.0101 (4)

0.0031 (4)

-0.0025(4)

| C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4892 (14)                             | C17—C18                              | 1.3869 (15)         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|---------------------|
| C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3906 (15)                             | C18—H18                              | 0.9500              |
| C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4012 (14)                             | С19—Н19                              | 0.9500              |
| С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                                  | C8—H8A                               | 0.9800              |
| C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3886 (14)                             | C8—H8B                               | 0.9800              |
| С7—Н7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                                  | C8—H8C                               | 0.9800              |
| C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3858 (14)                             |                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                      |                     |
| C6—O3—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.07 (9)                              | С10—С9—Н9                            | 118.6               |
| C5—O4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112.0 (14)                              | С11—С10—Н10                          | 120.2               |
| C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.0 (14)                              | <b>C9</b> — <b>C</b> 10— <b>C</b> 11 | 119.55 (10)         |
| C13 - N1 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.86 (9)                              | C9—C10—H10                           | 120.2               |
| C19 - N2 - C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.30 (10)                             | N1—C13—C12                           | 123.09 (10)         |
| $C_{12}$ $C_{11}$ $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.32 (10)                             | N1-C13-H13                           | 118.5               |
| C12 - C11 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12347(10)                               | C12—C13—H13                          | 118.5               |
| C10-C11-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119 18 (9)                              | C16—C15—H15                          | 119.0               |
| 04-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122 43 (9)                              | C14-C15-C16                          | 121.99 (10)         |
| 04-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11853(10)                               | C14-C15-H15                          | 119.0               |
| C4-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.04 (9)                              | C5-C4-H4A                            | 119.5               |
| $0^{2}-C^{1}-0^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123 31 (10)                             | $C_3 - C_4 - C_5$                    | 120.93 (10)         |
| 02 - C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.10 (10)                             | $C_3 - C_4 - H_4 A$                  | 119 5               |
| 01 - C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113 58 (9)                              | $C_{16} - C_{20} - H_{20}$           | 120.4               |
| $C_{3}$ $C_{2}$ $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121 74 (9)                              | C19 - C20 - C16                      | 119 30 (10)         |
| $C_{3}$ $C_{2}$ $C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119 71 (9)                              | C19 - C20 - H20                      | 120.4               |
| $C_{7}$ $C_{2}$ $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118 52 (9)                              | $C_{11} - C_{14} - H_{14}$           | 117.1               |
| $C_{2} - C_{3} - H_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0                                   | C15-C14-C11                          | 12572(10)           |
| $C_{4}$ $C_{3}$ $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119 94 (10)                             | C15 - C14 - H14                      | 117.1               |
| C4-C3-H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0                                   | C16—C17—H17                          | 120.3               |
| $C_2 - C_7 - H_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.9                                   | C18 - C17 - C16                      | 120.3<br>119.35(10) |
| $C_{6} - C_{7} - C_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.26 (10)                             | C18 - C17 - H17                      | 120.3               |
| C6-C7-H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                                   | $N_{2}$ $C_{18}$ $C_{17}$            | 123.28 (11)         |
| $C_{20}$ $C_{16}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121 40 (10)                             | $N_2 = C_{18} = H_{18}$              | 118.4               |
| $C_{20} - C_{10} - C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.40(10)<br>117.35(10)                | C17 - C18 - H18                      | 118.4               |
| $C_{17}$ $C_{16}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121 24 (10)                             | $N_{2}$ $C_{19}$ $C_{20}$            | 123 38 (10)         |
| $C_{11} = C_{12} = H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.3                                   | $N_2 - C_{19} - H_{19}$              | 123.36 (10)         |
| $C_{13}$ $C_{12}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119 36 (10)                             | $C_{20}$ $C_{19}$ $H_{19}$           | 118.3               |
| C13 - C12 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.3                                   | $O_3 = C_8 = H_8 \Delta$             | 109.5               |
| $C_{13}^{} C_{12}^{} C_{1$ | 120.3<br>114.87(0)                      | $O_3 C_8 H_{8B}$                     | 109.5               |
| 03 - 06 - 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125.05 (10)                             | 03-C8-H8C                            | 109.5               |
| $C_{1}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.07(0)                               |                                      | 109.5               |
| C = C = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.07 (9)                              |                                      | 109.5               |
| N1 = C9 = H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.0                                   |                                      | 109.5               |
| 111-C7-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.01 (10)                             |                                      | 107.3               |
| 02 - C1 - C2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.25 (11)                             | C12—C11—C14—C15                      | -26.50(18)          |
| 02-C1-C2-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.63 (16)                              | C6—C5—C4—C3                          | 2.43 (16)           |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.61(15)                               | C9-N1-C13-C12                        | -0.93(16)           |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177.83 (10)                             | C10-C11-C12-C13                      | 0.39 (16)           |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -177.84(10)                             | C10-C11-C14-C15                      | 155 42 (11)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                      |                     |

| O1—C1—C2—C3     | -3.78 (15)   | C13—N1—C9—C10   | 1.19 (16)    |
|-----------------|--------------|-----------------|--------------|
| O1—C1—C2—C7     | 174.34 (10)  | C15-C16-C20-C19 | -177.84 (11) |
| N1-C9-C10-C11   | -0.66 (17)   | C15—C16—C17—C18 | 178.96 (11)  |
| C11—C12—C13—N1  | 0.15 (17)    | C4—C5—C6—O3     | 177.11 (9)   |
| C1—C2—C3—C4     | 176.90 (10)  | C4—C5—C6—C7     | -2.45 (16)   |
| C1—C2—C7—C6     | -177.00 (9)  | C20-C16-C15-C14 | 146.38 (12)  |
| C2—C3—C4—C5     | -0.61 (17)   | C20-C16-C17-C18 | -0.85 (17)   |
| C2—C7—C6—O3     | -178.84 (10) | C14—C11—C12—C13 | -177.72 (10) |
| C2—C7—C6—C5     | 0.68 (16)    | C14—C11—C10—C9  | 178.05 (10)  |
| C3—C2—C7—C6     | 1.15 (16)    | C17—C16—C15—C14 | -33.42 (17)  |
| C7—C2—C3—C4     | -1.20 (16)   | C17—C16—C20—C19 | 1.97 (17)    |
| C16-C15-C14-C11 | 179.32 (10)  | C18—N2—C19—C20  | -0.37 (18)   |
| C16—C20—C19—N2  | -1.42 (19)   | C19—N2—C18—C17  | 1.59 (18)    |
| C16-C17-C18-N2  | -0.98 (19)   | C8—O3—C6—C5     | 177.99 (10)  |
| C12-C11-C10-C9  | -0.15 (16)   | C8—O3—C6—C7     | -2.47 (16)   |
|                 |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A    | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------------------------|-------------|----------|-------------|-------------------------|
| 01—H1···N1 <sup>i</sup>     | 0.99 (2)    | 1.65 (2) | 2.6295 (12) | 169 (2)                 |
| O4—H4…N2 <sup>ii</sup>      | 0.92 (2)    | 1.84 (2) | 2.6868 (13) | 154 (2)                 |
| C4—H4A····O2 <sup>iii</sup> | 0.95        | 2.53     | 3.2341 (14) | 132                     |
| C9—H9…O3 <sup>iv</sup>      | 0.95        | 2.45     | 3.3520 (14) | 158                     |

Symmetry codes: (i) x-1, y, z; (ii) x+1, -y+1/2, z+1/2; (iii) -x, y+1/2, -z+3/2; (iv) -x+1, y+1/2, -z+3/2.