Received 9 March 2022
Accepted 10 March 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bonding.

Structural data: full structural data are available from iucrdata.iucr.org

N-(4-Methoxy-2-nitrophenyl)acetamide

James E. Hines III, ${ }^{\text {a }}$ Curtistine J. Deere, ${ }^{\text {a }}$ Poornasai Vaddi, ${ }^{\text {a }}$ Ranjeeth R. Kondati, ${ }^{\text {a }}$ Frank R. Fronczek ${ }^{\text {b }}$ and Rao M. Uppu ${ }^{\text {a }}$ *

${ }^{\text {a }}$ Department of Environmental Toxicology, Southern University and A\&M College, Baton Rouge, LA 70813, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA. *Correspondence e-mail: rao_uppu@subr.edu

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$, the three substituents vary in the degree of lack of planarity with the central phenyl ring. The methoxy group is nearest to being coplanar, with a $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ torsion angle of $6.1(5)^{\circ}$. The nitro group is less coplanar, with a $12.8(5)^{\circ}$ twist about the $\mathrm{C}-\mathrm{N}$ bond and the acetamido group is considerably less coplanar with the central ring, having a $25.4(5)^{\circ}$ twist about the $\mathrm{C}-\mathrm{N}$ bond to the ring. The NH group forms an intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to a nitro-group O atom.

Chemical scheme

Structure description

The analgesic use of 4-alkoxyacetanilides, in particular 4-ethoxyacetanilide or 4-EA, predates the First World War. 4-Hydroxyacetanilide (popularly known as Tylenol or acetaminophen) and 4-EA were introduced into the markets at around the same time; however, 4-EA was withdrawn from sale some decades ago due to its carcinogenic and kidney-damaging properties (Dubach et al., 1983; Nakanishi et al., 1982). Although there has been extensive information on phase I and phase II biotransformation of 4-alkoxyacetanilides (Hinson, 1983; Kapetanović et al., 1979; Mulder et al., 1984; Veronese et al., 1985), little or no information is available on nitrated or other oxidation products that could be formed in reactions with cellular oxidants, such as hypochlorite ($\left.{ }^{-} \mathrm{OCl}\right) /$ hypochlorous acid $\left(\mathrm{HOCl} ; \mathrm{p} K_{\mathrm{a}} \simeq 7.53\right)$ and peroxynitrite $\left(\mathrm{ONOO}^{-}\right)$/peroxynitrous acid $\left(\mathrm{ONOOH} ; \mathrm{p} K_{\mathrm{a}} \simeq 6.2 ; \mathrm{ONOOH}\right.$ and ONOO^{-}are collectively referred to as peroxynitrite or PN). We have shown, for instance, that 4-hydroxyacetanilide forms nitrated and chlorinated products along with varying amounts of dimers when reacted with $\mathrm{HOCl} /{ }^{-} \mathrm{OCl}$ and $\mathrm{PN} / \mathrm{CO}_{2}$ under physiologically relevant conditions (Uppu \& Martin, 2005; Deere et al., 2022). We suspect that similar products (or their positional isomers) may be formed in the reactions of 4-alkoxyacetanilides with the cellular oxidants refer-

Figure 1
The title molecule with 50% displacement ellipsoids with the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond shown as a blue dashed line.
enced above. Towards a better understanding of this and to shed light on molecular targets (Bertolini et al., 2006), we have synthesized the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$: single crystals grown from aqueous solution were analyzed by X-ray diffraction.

The title compound is shown in Fig. 1. It is significantly nonplanar, and its deviation from planarity may be described by torsion angles about bonds from the central C1-C6 phenyl ring to the three substituents. The methoxy group is nearest to being coplanar, with a $\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$ torsion angle of $6.1(5)^{\circ}$. The nitro group deviates more from coplanarity with the central ring, with the $\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$ torsion angle

Figure 2
The unit cell, viewed down the [010] direction, showing intramolecular hydrogen bonds.

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3$	$0.87(5)$	$1.92(5)$	$2.632(4)$	$137(4)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.48	$3.418(4)$	171
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$	0.95	2.30	$2.864(4)$	117
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {ii }}$	0.98	2.64	$3.578(4)$	160
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O} 4^{\mathrm{iii}}$	0.98	2.63	$3.546(4)$	156

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$;
(iii)
being $-12.8(5)^{\circ}$. The acetamido group is considerably less coplanar with the central ring, with a $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$ torsion angle of $25.4(5)^{\circ}$. These deviations are similar to those seen in the analogous 4-ethoxy compound (Uppu et al., 2020), in which the corresponding torsion angles are 0.56 (12), $-14.94(13)$ and $18.23(15)^{\circ}$, respectively. N-(4-Hydroxy-2nitrophenyl)acetamide (Hines et al., 2022) is considerably more planar, with torsion angles to the nitro group and to the acetamido group being -0.79 (19) and $3.1(2)^{\circ}$, respectively, likely as a result of intermolecular hydrogen bonding by the OH group. The structure of N-(4-hydroxy-3-nitrophenyl)acetamide, in which the OH group likewise participates in intermolecular hydrogen bonding, has also been reported (Salahifar et al., 2015; Deere et al., 2019). It is also more planar than the title compound, with a torsion angle of $-11.8(2)^{\circ}$ for the nitro group and $9.0(2)^{\circ}$ for the acetamido group. An intramolecular $\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3$ hydrogen bond (Table 1) is observed in the title compound.

The unit cell of the title compound is shown in Figs. 2 and 3. The closest intermolecular contact is $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$ (at $1-x$, $-y, 1-z$), forming dimers about inversion centers with a $\mathrm{C} \cdots \mathrm{O}$ distance of 3.418 (4) \AA and 171° angle about H . Molecules form a herringbone pattern in the [101] direction with alternate phenyl rings forming a dihedral angle of 65.7 (2) ${ }^{\circ}$.

Synthesis and crystallization

N-(4-Methoxy-2-nitrophenyl)acetamide was synthesized by acetylation of 4-methoxy-2-nitroaniline using acetic anhydride in acetic acid solvent: $3.36 \mathrm{~g}(20 \mathrm{mmol})$ of 4-methoxy-2nitroaniline in 30 ml of glacial acetic was allowed to react with 2.46 g (24 mmol) of acetic anhydride for 18 h at room temperature. The reaction mixture was stirred continuously during the reaction. In the end, the mixture was dried under

Figure 3
The unit cell, viewed down the [101] direction. H atoms are not shown.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$
M_{r}	210.19
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	90
$a, b, c(\AA)$	$14.8713(7), 3.9563(2), 17.2057(9)$
$\beta\left({ }^{\circ}{ }^{\circ}\right)$	$114.051(3)$
$V\left(\AA^{3}\right)$	$924.42(8)$
Z	4
Radiation type	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.03
Crystal size (mm)	$0.42 \times 0.06 \times 0.01$
Data collection	Bruker Kappa APEXII DUO
Diffractometer	CCD
	Multi-scan $(S A D A B S ;$ Krause $e t$
Absorption correction	$a l ., 2015)$
	$0.692,0.990$
$T_{\text {min }}, T_{\text {max }}$	$11516,1638,1211$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.122
$R_{\text {int }}$	0.595
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.071,0.203,1.09$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	1638
No. of reflections	141
No. of parameters	H atoms treated by a mixture of
H -atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.24,-0.27$

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).
vacuum, and the N-(4-methoxy-2-nitrophenyl)acetamide in the residue was purified by recrystallization twice from aqueous solution. Single crystals in the form of yellow laths were grown in water by slow cooling of a hot and nearly saturated solution of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The authors acknowledge the support from the National Institutes of Health (NIH) through the National Institute of

General Medical Science (NIGMS) grant No. 5 P2O GM103424-17 and the US Department of Education (US DoE; Title III, HBGI Part B grant No. P031B040030). Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE. The upgrade of the diffractometer was made possible by grant No. $\operatorname{LEQSF}(2011-12)$-ENH-TR-01, administered by the Louisiana Board of Regents

References

Bertolini, A., Ferrari, A., Ottani, A., Guerzoni, S., Tacchi, R. \& Leone, S. (2006). CNS Drug Rev. 12, 250-275.
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Deere, C. J., Hines, J. E. III, Agu, O. A., Fronczek, F. R. \& Uppu, R. M. (2019). CSD Communication (CCDC 1910293). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc223tcd.
Deere, C. J., Hines, J. E. III \& Uppu, R. M. (2022). Unpublished.
Dubach, U. C., Rosner, B. \& Pfister, E. (1983). New Engl. J. Med. 308, 357-362.
Hines, J. E. III, Deere, C. J., Fronczek, F. R. \& Uppu, R. M. (2022). IUCr Data, 7, x220201.
Hinson, J. A. (1983). Environ. Health Perspect. 49, 71-79.
Kapetanović, I. M., Strong, J. M. \& Mieyal, J. J. (1979). J. Pharmacol. Exp. Ther. 209, 20-24.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Mulder, G. J., Kadlubar, F. F., Mays, J. B. \& Hinson, J. A. (1984). Mol. Pharmacol. 26, 342-347.
Nakanishi, K., Kurata, Y., Oshima, M., Fukushima, S. \& Ito, N. (1982). Int. J. Cancer, 29, 439-444.
Salahifar, E., Nematollahi, D., Bayat, M., Mahyari, A. \& Amiri Rudbari, H. (2015). Org. Lett. 17, 4666-4669.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Uppu, R. M. \& Martin, R. J. (2005). Toxicologist (supplement to Toxicol. Sci), p. 319. https://www.toxicology.org/pubs/docs/Tox/ 2005Tox.pdf
Uppu, S. N., Agu, O. A., Deere, C. J. \& Fronczek, F. R. (2020). CSD Communication (CCDC 2021362). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc25vd7p.
Veronese, M. E., McLean, S., D'Souza, C. A. \& Davies, N. W. (1985). Xenobiotica, 15, 929-940.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

N-(4-Methoxy-2-nitrophenyl)acetamide

James E. Hines III, Curtistine J. Deere, Poornasai Vaddi, Ranjeeth R. Kondati, Frank R. Fronczek and Rao M. Uppu

N-(4-Methoxy-2-nitrophenyl)acetamide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=210.19$
Monoclinic, $P 2{ }_{1} / n$
$a=14.8713$ (7) \AA
$b=3.9563$ (2) \AA
$c=17.2057(9) \AA$
$\beta=114.051(3)^{\circ}$
$V=924.42(8) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII DUO CCD
diffractometer
Radiation source: I $\mu \mathrm{S}$ microfocus
QUAZAR multilayer optics monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.692, T_{\text {max }}=0.990$
$F(000)=440$
$D_{\mathrm{x}}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2102 reflections
$\theta=3.3-66.3^{\circ}$
$\mu=1.03 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Lath, yellow
$0.42 \times 0.06 \times 0.01 \mathrm{~mm}$

> 11516 measured reflections
> 1638 independent reflections
> 1211 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.122$
> $\theta_{\max }=66.7^{\circ}, \theta_{\min }=3.3^{\circ}$
> $h=-17 \rightarrow 17$
> $k=-4 \rightarrow 4$
> $l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.203$
$S=1.09$
1638 reflections
141 parameters
0 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+0.298 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were located in difference maps and those on C were thereafter treated as riding in geometrically idealized positions with $\mathrm{C} — \mathrm{H}$ distances $0.95 \AA$ for phenyl and $0.98 \AA$ for methyl. Coordinates of the $\mathrm{N}-$ H hydrogen atom were refined. $U_{\mathrm{iso}}(\mathrm{H})$ values were assigned as $1.2 U_{\mathrm{eq}}$ for the attached atom (1.5 for methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.58485(18)$	$0.7604(7)$	$0.81731(16)$	$0.0512(7)$
O2	$0.36866(18)$	$0.2368(6)$	$0.43490(15)$	$0.0455(6)$
O3	$0.23210(18)$	$0.9412(7)$	$0.67288(16)$	$0.0529(7)$
O4	$0.16683(18)$	$0.9595(6)$	$0.53559(16)$	$0.0480(7)$
N1	$0.4165(2)$	$0.7462(7)$	$0.75182(18)$	$0.0447(7)$
H1N	$0.363(4)$	$0.830(11)$	$0.753(3)$	0.054^{*}
N2	$0.2326(2)$	$0.8718(7)$	$0.60286(18)$	$0.0416(7)$
C1	$0.4018(3)$	$0.6185(9)$	$0.6716(2)$	$0.0428(8)$
C2	$0.3144(2)$	$0.6751(8)$	$0.5992(2)$	$0.0420(8)$
C3	$0.3005(2)$	$0.5555(8)$	$0.5182(2)$	$0.0415(8)$
H3A	0.241073	0.602472	0.470197	0.050^{*}
C4	$0.3736(3)$	$0.3699(8)$	$0.5092(2)$	$0.0417(8)$
C5	$0.4605(3)$	$0.3057(8)$	$0.5806(2)$	$0.0431(8)$
H5	0.511084	0.176401	0.574482	0.052^{*}
C6	$0.4740(3)$	$0.4264(9)$	$0.6593(2)$	$0.0442(8)$
H6	0.533915	0.378381	0.706654	0.053^{*}
C7	$0.5054(3)$	$0.8178(8)$	$0.8187(2)$	$0.0435(8)$
C8	$0.4928(3)$	$0.9743(9)$	$0.8926(2)$	$0.0475(8)$
H8A	0.473964	0.799894	0.923540	0.071^{*}
H8B	0.441299	1.147414	0.872021	0.071^{*}
H8C	0.554993	1.078496	0.930706	0.071^{*}
C9	$0.2843(3)$	$0.3245(9)$	$0.3589(2)$	$0.0488(9)$
H9A	0.224837	0.228708	0.361637	0.073^{*}
H9B	0.292327	0.233462	0.309172	0.073^{*}
H9C	0.278101	0.571021	0.354165	0.073^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0331(14)$	$0.0634(15)$	$0.0497(14)$	$0.0015(10)$	$0.0093(11)$	$-0.0066(11)$
O2	$0.0413(14)$	$0.0494(13)$	$0.0439(13)$	$-0.0005(10)$	$0.0154(10)$	$-0.0013(10)$
O3	$0.0419(14)$	$0.0706(16)$	$0.0434(14)$	$0.0026(12)$	$0.0145(11)$	$-0.0053(11)$
O4	$0.0361(13)$	$0.0553(14)$	$0.0444(13)$	$0.0047(10)$	$0.0079(10)$	$0.0026(10)$
N1	$0.0398(17)$	$0.0513(16)$	$0.0424(15)$	$0.0000(12)$	$0.0162(13)$	$0.0006(12)$
N2	$0.0308(15)$	$0.0463(15)$	$0.0425(16)$	$-0.0030(11)$	$0.0097(13)$	$-0.0028(12)$
C1	$0.0376(18)$	$0.0453(17)$	$0.0429(18)$	$-0.0019(13)$	$0.0140(15)$	$0.0030(13)$
C2	$0.0354(18)$	$0.0430(17)$	$0.0458(19)$	$-0.0024(13)$	$0.0148(15)$	$0.0032(13)$
C3	$0.0342(17)$	$0.0411(17)$	$0.0432(17)$	$-0.0037(13)$	$0.0095(14)$	$0.0033(13)$
C4	$0.0381(18)$	$0.0425(17)$	$0.0446(18)$	$-0.0025(13)$	$0.0170(15)$	$-0.0011(13)$
C5	$0.0331(18)$	$0.0454(17)$	$0.0469(19)$	$-0.0008(13)$	$0.0125(15)$	$-0.0009(14)$
C6	$0.0366(18)$	$0.0437(17)$	$0.0495(19)$	$0.0007(13)$	$0.0146(15)$	$0.0033(14)$
C7	$0.0342(19)$	$0.0449(17)$	$0.0452(18)$	$-0.0005(13)$	$0.0099(15)$	$0.0039(13)$
C8	$0.0412(19)$	$0.0501(19)$	$0.0462(18)$	$0.0005(15)$	$0.0126(15)$	$-0.0017(15)$
C9	$0.045(2)$	$0.0517(19)$	$0.0416(18)$	$0.0030(15)$	$0.0089(16)$	$-0.0008(14)$

Geometric parameters (A, ${ }^{\circ}$)

O1-C7	1.214 (4)	C3-H3A	0.9500
O2-C4	1.357 (4)	C4-C5	1.395 (5)
O2-C9	1.438 (4)	C5-C6	1.371 (5)
O3-N2	1.239 (4)	C5-H5	0.9500
O4-N2	1.222 (4)	C6-H6	0.9500
N1-C7	1.383 (5)	C7-C8	1.492 (5)
N1-C1	1.401 (5)	C8-H8A	0.9800
N1-H1N	0.87 (5)	C8-H8B	0.9800
N2-C2	1.467 (4)	C8-H8C	0.9800
C1-C6	1.400 (5)	C9-H9A	0.9800
C1-C2	1.405 (5)	C9-H9B	0.9800
C2-C3	1.404 (5)	C9-H9C	0.9800
C3-C4	1.372 (5)		
C4-O2-C9	117.1 (3)	C6-C5-H5	119.5
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	127.4 (3)	C4- $\mathrm{C} 5-\mathrm{H} 5$	119.5
C7-N1-H1N	118 (3)	C5-C6-C1	121.7 (3)
C1-N1-H1N	113 (3)	C5-C6-H6	119.1
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O} 3$	122.6 (3)	C1-C6-H6	119.1
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 2$	117.9 (3)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	123.6 (3)
O3-N2-C2	119.6 (3)	O1-C7-C8	123.8 (3)
C6-C1-N1	121.6 (3)	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	112.7 (3)
C6-C1-C2	116.2 (3)	C7-C8-H8A	109.5
N1-C1-C2	122.2 (3)	C7-C8- H 8 B	109.5
C3-C2-C1	122.4 (3)	H8A-C8-H8B	109.5
C3-C2-N2	115.6 (3)	C7- $78-\mathrm{H} 8 \mathrm{C}$	109.5
C1-C2-N2	122.0 (3)	H8A-C8-H8C	109.5
C4-C3-C2	119.2 (3)	H8B-C8-H8C	109.5
C4-C3-H3A	120.4	O2-C9-H9A	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4	O2-C9- H 9 B	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	124.9 (3)	H9A-C9-H9B	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	115.7 (3)	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
C3-C4-C5	119.4 (3)	H9A-C9-H9C	109.5
C6-C5-C4	121.0 (3)	H9B-C9-H9C	109.5
C7-N1-C1-C6	25.4 (5)	C9-O2-C4-C3	6.1 (5)
C7-N1-C1-C2	-154.6 (3)	C9-O2-C4-C5	-174.3 (3)
C6-C1-C2-C3	-1.8 (5)	C2-C3-C4-O2	179.1 (3)
N1-C1-C2-C3	178.2 (3)	C2-C3-C4-C5	-0.4 (5)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	180.0 (3)	O2-C4-C5-C6	-179.9 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-0.1 (5)	C3-C4-C5-C6	-0.3 (5)
O4-N2-C2-C3	-10.9 (4)	C4-C5-C6-C1	-0.1 (5)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	168.8 (3)	N1-C1-C6-C5	-178.9 (3)
O4- $22-\mathrm{C} 2-\mathrm{C} 1$	167.5 (3)	C2-C1-C6-C5	1.1 (5)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	-12.8(5)	C1-N1-C7-O1	-3.9 (6)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.5 (5)	C1-N1-C7-C8	175.8 (3)

N2-C2-C3-C4

179.9 (3)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 3$	$0.87(5)$	$1.92(5)$	$2.632(4)$	$137(4)$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.48	$3.418(4)$	171
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$	0.95	2.30	$2.864(4)$	117
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.98	2.64	$3.578(4)$	160
$\mathrm{C} 8 — \mathrm{H} 8 C \cdots \mathrm{O} 4^{\mathrm{iii}}$	0.98	2.63	$3.546(4)$	156

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (iii) $x+1 / 2,-y+5 / 2, z+1 / 2$.

