

IUCrData

ISSN 2414-3146

Received 16 February 2022 Accepted 14 March 2022

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; Hirshfeld surface; indazol-4-one.

CCDC reference: 2158365

Structural data: full structural data are available from iucrdata.iucr.org

## (*E*)-5-(4-Methylbenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1*H*-indazol-4-one

C. Selva Meenatchi,<sup>a</sup> S. Athimoolam,<sup>b</sup> J. Suresh,<sup>a</sup> R. Vishnu Priya,<sup>a</sup> S. Raja Rubina<sup>c</sup> and S. R. Bhandari<sup>d</sup>\*

<sup>a</sup>Department of Physics, The Madura College, Madurai 625 011, India, <sup>b</sup>Department of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil 629 004, Tamilnadu, India, <sup>c</sup>Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and <sup>d</sup>Department of Physics, Bhairahawa M. Campus, Tribhuvan University, Nepal. \*Correspondence e-mail: shalikaa.bh@gmail.com

In the title compound,  $C_{21}H_{18}N_2O$ , the non-aromatic six-membered ring adopts a distorted envelope conformation with one of the methylene-C atoms being the flap atom. The dihedral angle between the phenyl and 4-tolyl rings is 75.3 (1)°. The 1,2-diazole ring forms dihedral angles of 41.9 (1) and 65.5 (1)° with the phenyl and 4-tolyl rings, respectively. In the crystal, stabilizing C-H···O, C-H··· $\pi$  and  $\pi$ - $\pi$  interactions are evident. The calculated Hirshfeld surfaces highlight the prominent role of C-H···O interactions (8.6%), along with H···H (51.7%) and C···H/H···C (29.2%) surface contacts.



### Structure description

Heterocyclic compounds have been investigated for a long while in view of their pharmaceutical and biological importance. 1,2-Diazole derivatives are found to possess antibacterial, anti-viral, anti-inflammatory, anti-depressant and anti-cancer activities (Popat *et al.*, 2003; Faisal *et al.*, 2019) because of their conformational freedom and exhibit intermolecular interactions of biological relevance. Owing to its medicinal interest and in a continuation of previous work, the crystal and molecular structures of another indazole derivative, namely, (*E*)-5-(4-methylbenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1*H*-indazol-4-one, (I), is reported here.

The molecule of (I) and the recently reported 4-chlorobenzylidene derivative (II) (Meenatchi *et al.*, 2021) are isomorphous. The shorter *b*-axis lengths differ slightly between the isomorphous crystal structures, *i.e.* 8.7177 (5) Å for (I) and 8.6604 (5) Å for (II). In (I), the non-aromatic six-membered ring adopts a distorted envelope conformation with the methylene-C9 atom being the flap atom, Fig. 1. The heterocyclic five-





Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids

membered ring forms dihedral angles of 41.9 (1) and 65.5 (1)° with the pendent N-bound phenyl and 4-tolyl rings, respectively. A weak intramolecular  $C6-H12\cdots O1$  interaction (Table 1) stabilizes the molecular structure.

The molecular packing features  $C-H\cdots O$ ,  $C-H\cdots \pi$  and  $\pi-\pi$  interactions (Fig. 2). The  $C-H\cdots O$  intermolecular interactions, *viz.*,  $C12-H4\cdots O1^{i}$  and  $C17-H5\cdots O1^{ii}$ , lead, respectively, to two centrosymmetric ring  $R_2^2(16)$  and  $R_2^2(10)$  motifs (Bernstein *et al.*, 1995) (Fig. 3); see Table 1 for symmetry operations. These centrosymmetric dimers are connected through another  $C-H\cdots O$  interaction, namely,  $C18-H8\cdots O1^{iii}$ , leading to a chain C(8) motif along the *c*-axis direction of the unit cell (Fig. 4).

As a quantitative approach to analyse the intermolecular interactions, the Hirshfeld surfaces and two-dimensional (2-D) fingerprint plots were generated by employing the *Crystal Explorer* software (Wolff *et al.*, 2012). The Hirshfeld surface is colour-mapped with the normalized contact distance,  $d_{\text{norm}}$ , from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The different types of intermolecular interactions can be identified by colour coding the distances from the surface to the nearest atom exterior ( $d_e$ ) or interior ( $d_i$ ) plots to the surface. The 2-D fingerprint plots from the surface analysis and the  $d_{\text{norm}}$  surface were analysed for (I) to further explore the packing modes and intermolecular interactions. The 3-D Hirshfeld surfaces and 2-D fingerprint plots with percentage contributions are shown in Fig. 5. C···H/



The molecular packing of (I), viewed down the b axis.

| , , ,                      |      | /                       |              |                             |
|----------------------------|------|-------------------------|--------------|-----------------------------|
| $D - \mathbf{H} \cdots A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
| C6—H12···O1                | 0.93 | 2.43                    | 2.806 (2)    | 104                         |
| $C12-H4\cdots O1^{i}$      | 0.93 | 2.52                    | 3.312 (2)    | 143                         |
| $C17 - H5 \cdots O1^{ii}$  | 0.93 | 2.60                    | 3.5081 (19)  | 164                         |
| C18−H8···O1 <sup>iii</sup> | 0.93 | 2.46                    | 3.325 (2)    | 155                         |
|                            |      |                         |              |                             |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, y,  $-z + \frac{1}{2}$ ; (iii) x, -y,  $z + \frac{1}{2}$ .

H···C contacts (with a pair of spikes in the fingerprint plot, 29.2%) and O···H/H···O interactions (sharp spikes, 8.6%) make a significant contribution to the overall contacts; the latter incorporate the notable C-H···O interactions. The H···H interactions contribute 51.7% with widely scattered points of high density showing a large proportion of hydrogen atoms in the molecular structure, indicating the importance of van der Waals contacts in the molecular packing. The N···H/H···N intermolecular contacts are identified as making a



 $C - H \cdots O$  interactions shown as dashed lines forming ring (a)  $R_2^2(16)$  and (b)  $R_2^2(10)$  motifs.



**Figure 4** C-H···O interactions shown as dashed lines forming chain C(8) motif along b axis of the unit cell



Figure 5

3-D Hirshfeld surfaces (showing  $d_{\text{norm}}$ ,  $d_{\text{i}}$  and  $d_{\text{e}}$ ) and 2-D fingerprint plots.

notable contribution to the total Hirshfeld surface comprising about 6.9%. However, the  $C-H\cdots N$  intermolecular interactions are not prominent in the packing as the separations are greater than the van der Waals radii.

### Synthesis and crystallization

A mixture of 1-phenyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (1 mmol) and 4-methylbenzaldehyde (1 mmol) was dissolved in ethanol followed by the addition of alcoholic NaOH. The mixture was stirred at room temperature for 1 h to afford (*E*)-5-(4-methylbenzylidene)-1-phenyl-1,5,6,7-tetrahydro-4*H*-ind-azol-4-ones as a precipitate, which was filtered, dried and recrystallized from ethanol: yield: 99%, m.p. 172–175°C.

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

### Acknowledgements

JS and RV thank the management of The Madura College for their constant support and encouragement. The authors' contributions are as follows: Conceptualization, CSM; meth-

| Table 2                                                                  |                                |
|--------------------------------------------------------------------------|--------------------------------|
| Experimental details.                                                    |                                |
| Crystal data                                                             |                                |
| Chemical formula                                                         | $C_{21}H_{18}N_2O$             |
| $M_{ m r}$                                                               | 314.37                         |
| Crystal system, space group                                              | Monoclinic, C2/c               |
| Temperature (K)                                                          | 293                            |
| a, b, c (Å)                                                              | 30.3989 (15), 8.7177 (5),      |
|                                                                          | 14.0581 (7)                    |
| $\beta$ (°)                                                              | 115.367 (2)                    |
| $V(Å^3)$                                                                 | 3366.3 (3)                     |
| Ζ                                                                        | 8                              |
| Radiation type                                                           | Μο Κα                          |
| $\mu \ (\mathrm{mm}^{-1})$                                               | 0.08                           |
| Crystal size (mm)                                                        | $0.20 \times 0.20 \times 0.18$ |
| Data collection                                                          |                                |
| Diffractometer                                                           | Bruker SMART APEXII CCD        |
| Absorption correction                                                    | _                              |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 22457, 2948, 2557              |
| R <sub>int</sub>                                                         | 0.048                          |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.595                          |
| Refinement                                                               |                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.044, 0.126, 1.07             |
| No. of reflections                                                       | 2948                           |
| No. of parameters                                                        | 219                            |
| H-atom treatment                                                         | H-atom parameters constrained  |
| $\Delta  ho_{ m max},  \Delta  ho_{ m min}  ({ m e}  { m \AA}^{-3})$     | 0.16, -0.18                    |

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020).

odology, CSM, SA; investigation, CSM, RVP; synthesis, X-ray, analysis and validation, SA; writing (original draft), CSM; writing (review and editing of the manuscript), SRB; visualization, JS; resources, RVP, SRR; supervision, JS; project administration, SRB.

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Faisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131, article No. 70. https://doi.org/10.1007/s12039-019-1646-1
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Meenatchi, C. S., Athimoolam, S., Suresh, J., Rubina, S. R., Kumar, R. R. & Bhandari, S. R. (2021). *IUCrData*, **6**, x211195.
- Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). *Indian J. Chem. Sect. B*, 42, 1497–1501.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer*. University of Western Australia.

# full crystallographic data

## IUCrData (2022). 7, x220283 [https://doi.org/10.1107/S2414314622002838]

## (E)-5-(4-Methylbenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1H-indazol-4-one

C. Selva Meenatchi, S. Athimoolam, J. Suresh, R. Vishnu Priya, S. Raja Rubina and S. R. Bhandari

(E)-5-(4-Methylbenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1H-indazol-4-one

Crystal data

C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>O  $M_r = 314.37$ Monoclinic, C2/c a = 30.3989 (15) Å b = 8.7177 (5) Å c = 14.0581 (7) Å  $\beta = 115.367$  (2)° V = 3366.3 (3) Å<sup>3</sup> Z = 8

## Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  and  $\varphi$  scans 22457 measured reflections 2948 independent reflections

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.126$ S = 1.072948 reflections 219 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1328  $D_x = 1.241 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3243 reflections  $\theta = 28.7-1.8^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 293 KBlock, colourless  $0.20 \times 0.20 \times 0.18 \text{ mm}$ 

2557 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.048$   $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$   $h = -36 \rightarrow 36$   $k = -10 \rightarrow 10$  $l = -16 \rightarrow 16$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0626P)^2 + 1.8343P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.17 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL,  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.075 (5)

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x           | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|---------------|--------------|-----------------------------|--|
| C1  | 0.67927 (8) | 0.0162 (3)    | 1.06046 (15) | 0.0789 (6)                  |  |
| H1  | 0.6816      | -0.0935       | 1.0667       | 0.118*                      |  |
| H9  | 0.6614      | 0.0543        | 1.0977       | 0.118*                      |  |
| H10 | 0.7114      | 0.0599        | 1.0900       | 0.118*                      |  |
| C2  | 0.65323 (6) | 0.0598 (2)    | 0.94602 (13) | 0.0543 (4)                  |  |
| C3  | 0.66930 (6) | 0.1813 (2)    | 0.90557 (14) | 0.0586 (5)                  |  |
| H11 | 0.6970      | 0.2352        | 0.9496       | 0.070*                      |  |
| C4  | 0.64503 (6) | 0.2237 (2)    | 0.80118 (14) | 0.0550 (4)                  |  |
| H6  | 0.6572      | 0.3038        | 0.7758       | 0.066*                      |  |
| C5  | 0.60276 (5) | 0.14887 (18)  | 0.73320 (12) | 0.0450 (4)                  |  |
| C6  | 0.57687 (6) | 0.20157 (19)  | 0.62334 (12) | 0.0487 (4)                  |  |
| H12 | 0.5965      | 0.2260        | 0.5899       | 0.058*                      |  |
| C7  | 0.52919 (6) | 0.21900 (18)  | 0.56538 (11) | 0.0445 (4)                  |  |
| C8  | 0.48996 (6) | 0.1884 (2)    | 0.60232 (12) | 0.0516 (4)                  |  |
| H13 | 0.5052      | 0.1753        | 0.6781       | 0.062*                      |  |
| H14 | 0.4736      | 0.0931        | 0.5713       | 0.062*                      |  |
| С9  | 0.45177 (5) | 0.3169 (2)    | 0.57388 (11) | 0.0462 (4)                  |  |
| H15 | 0.4246      | 0.2838        | 0.5876       | 0.055*                      |  |
| H16 | 0.4660      | 0.4074        | 0.6160       | 0.055*                      |  |
| C10 | 0.43483 (5) | 0.35272 (17)  | 0.45978 (11) | 0.0416 (4)                  |  |
| C11 | 0.34983 (5) | 0.45572 (19)  | 0.40541 (12) | 0.0487 (4)                  |  |
| C12 | 0.35632 (6) | 0.5344 (2)    | 0.49555 (13) | 0.0541 (4)                  |  |
| H4  | 0.3875      | 0.5536        | 0.5471       | 0.065*                      |  |
| C13 | 0.31616 (7) | 0.5847 (2)    | 0.50901 (16) | 0.0657 (5)                  |  |
| H3  | 0.3205      | 0.6369        | 0.5701       | 0.079*                      |  |
| C14 | 0.27001 (7) | 0.5582 (3)    | 0.43271 (17) | 0.0761 (6)                  |  |
| H2  | 0.2431      | 0.5928        | 0.4417       | 0.091*                      |  |
| C15 | 0.51236 (6) | 0.27563 (18)  | 0.45440 (11) | 0.0449 (4)                  |  |
| C16 | 0.46258 (6) | 0.32941 (18)  | 0.40502 (11) | 0.0440 (4)                  |  |
| C17 | 0.43202 (6) | 0.3710 (2)    | 0.30018 (12) | 0.0518 (4)                  |  |
| Н5  | 0.4413      | 0.3674        | 0.2453       | 0.062*                      |  |
| C18 | 0.61226 (6) | -0.01863 (19) | 0.87812 (13) | 0.0545 (4)                  |  |
| H8  | 0.6013      | -0.1025       | 0.9029       | 0.065*                      |  |
| C19 | 0.58722 (6) | 0.02523 (18)  | 0.77400 (13) | 0.0509 (4)                  |  |
| H7  | 0.5595      | -0.0287       | 0.7304       | 0.061*                      |  |
| C20 | 0.30333 (6) | 0.4275 (3)    | 0.32794 (14) | 0.0679 (5)                  |  |
| H18 | 0.2989      | 0.3743        | 0.2671       | 0.081*                      |  |
| C21 | 0.26374 (7) | 0.4799 (3)    | 0.34264 (17) | 0.0825 (7)                  |  |
| H17 | 0.2324      | 0.4620        | 0.2910       | 0.099*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# data reports

| N1 | 0.39101 (4) | 0.40554 (15) | 0.38972 (9)  | 0.0463 (3) |  |
|----|-------------|--------------|--------------|------------|--|
| N2 | 0.38894 (5) | 0.41551 (17) | 0.28944 (10) | 0.0550 (4) |  |
| 01 | 0.53899 (4) | 0.27719 (16) | 0.40893 (9)  | 0.0624 (4) |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| C1  | 0.0871 (14) | 0.0832 (14) | 0.0504 (11) | 0.0112 (11)  | 0.0142 (10) | 0.0108 (10) |
| C2  | 0.0548 (9)  | 0.0552 (10) | 0.0472 (9)  | 0.0125 (7)   | 0.0163 (7)  | 0.0056 (7)  |
| C3  | 0.0443 (8)  | 0.0577 (10) | 0.0587 (10) | 0.0017 (7)   | 0.0079 (7)  | 0.0034 (8)  |
| C4  | 0.0442 (8)  | 0.0548 (10) | 0.0624 (10) | 0.0039 (7)   | 0.0192 (7)  | 0.0142 (8)  |
| C5  | 0.0442 (8)  | 0.0470 (9)  | 0.0442 (8)  | 0.0097 (6)   | 0.0194 (6)  | 0.0042 (6)  |
| C6  | 0.0527 (9)  | 0.0532 (9)  | 0.0453 (8)  | 0.0075 (7)   | 0.0259 (7)  | 0.0052 (7)  |
| C7  | 0.0510 (8)  | 0.0484 (8)  | 0.0371 (7)  | 0.0075 (6)   | 0.0218 (6)  | 0.0038 (6)  |
| C8  | 0.0522 (9)  | 0.0645 (10) | 0.0409 (8)  | 0.0091 (7)   | 0.0226 (7)  | 0.0154 (7)  |
| C9  | 0.0449 (8)  | 0.0614 (9)  | 0.0339 (7)  | 0.0044 (7)   | 0.0183 (6)  | 0.0071 (6)  |
| C10 | 0.0443 (7)  | 0.0444 (8)  | 0.0329 (7)  | -0.0007 (6)  | 0.0134 (6)  | 0.0012 (6)  |
| C11 | 0.0432 (8)  | 0.0558 (9)  | 0.0430 (8)  | 0.0023 (7)   | 0.0146 (6)  | 0.0117 (7)  |
| C12 | 0.0455 (8)  | 0.0617 (10) | 0.0509 (9)  | 0.0024 (7)   | 0.0168 (7)  | 0.0010 (8)  |
| C13 | 0.0602 (10) | 0.0758 (13) | 0.0659 (11) | 0.0090 (9)   | 0.0317 (9)  | 0.0046 (9)  |
| C14 | 0.0502 (10) | 0.1054 (17) | 0.0754 (14) | 0.0144 (10)  | 0.0296 (10) | 0.0224 (12) |
| C15 | 0.0550 (9)  | 0.0479 (9)  | 0.0366 (7)  | 0.0026 (7)   | 0.0244 (7)  | -0.0001 (6) |
| C16 | 0.0547 (8)  | 0.0465 (8)  | 0.0313 (7)  | 0.0011 (6)   | 0.0191 (6)  | 0.0003 (6)  |
| C17 | 0.0654 (10) | 0.0582 (10) | 0.0324 (8)  | 0.0072 (8)   | 0.0214 (7)  | 0.0027 (7)  |
| C18 | 0.0589 (9)  | 0.0478 (9)  | 0.0540 (9)  | 0.0043 (7)   | 0.0217 (8)  | 0.0100 (7)  |
| C19 | 0.0505 (9)  | 0.0457 (9)  | 0.0493 (9)  | 0.0013 (7)   | 0.0145 (7)  | 0.0004 (7)  |
| C20 | 0.0513 (10) | 0.0972 (15) | 0.0440 (9)  | -0.0042 (9)  | 0.0097 (7)  | 0.0053 (9)  |
| C21 | 0.0429 (10) | 0.128 (2)   | 0.0619 (12) | -0.0002 (11) | 0.0088 (8)  | 0.0193 (13) |
| N1  | 0.0480 (7)  | 0.0545 (8)  | 0.0324 (6)  | 0.0029 (6)   | 0.0134 (5)  | 0.0035 (5)  |
| N2  | 0.0639 (9)  | 0.0638 (9)  | 0.0313 (7)  | 0.0062 (7)   | 0.0146 (6)  | 0.0044 (6)  |
| 01  | 0.0667 (8)  | 0.0851 (9)  | 0.0476 (7)  | 0.0143 (6)   | 0.0361 (6)  | 0.0098 (6)  |

## Geometric parameters (Å, °)

| C1—C2  | 1.506 (2) | C10—C16 | 1.379 (2)   |
|--------|-----------|---------|-------------|
| C1—H1  | 0.9600    | C11—C12 | 1.379 (2)   |
| С1—Н9  | 0.9600    | C11—C20 | 1.388 (2)   |
| C1—H10 | 0.9600    | C11—N1  | 1.430 (2)   |
| C2-C18 | 1.382 (2) | C12—C13 | 1.384 (2)   |
| C2—C3  | 1.386 (3) | C12—H4  | 0.9300      |
| C3—C4  | 1.381 (2) | C13—C14 | 1.372 (3)   |
| С3—Н11 | 0.9300    | С13—Н3  | 0.9300      |
| C4—C5  | 1.392 (2) | C14—C21 | 1.378 (3)   |
| С4—Н6  | 0.9300    | C14—H2  | 0.9300      |
| C5—C19 | 1.395 (2) | C15—O1  | 1.2279 (18) |
| C5—C6  | 1.474 (2) | C15—C16 | 1.446 (2)   |
| C6—C7  | 1.333 (2) | C16—C17 | 1.412 (2)   |
| С6—Н12 | 0.9300    | C17—N2  | 1.311 (2)   |
|        |           |         |             |

| C7—C15     | 1.502 (2)   | С17—Н5       | 0.9300      |
|------------|-------------|--------------|-------------|
| C7—C8      | 1.514 (2)   | C18—C19      | 1.383 (2)   |
| C8—C9      | 1.538 (2)   | C18—H8       | 0.9300      |
| C8—H13     | 0.9700      | С19—Н7       | 0.9300      |
| C8—H14     | 0.9700      | C20—C21      | 1.383 (3)   |
| C9—C10     | 1.4925 (19) | С20—Н18      | 0.9300      |
| С9—Н15     | 0.9700      | С21—Н17      | 0.9300      |
| С9—Н16     | 0.9700      | N1—N2        | 1.3867 (17) |
| C10—N1     | 1.3535 (18) |              |             |
|            |             |              |             |
| C2—C1—H1   | 109.5       | C16—C10—C9   | 123.85 (13) |
| С2—С1—Н9   | 109.5       | C12—C11—C20  | 120.41 (16) |
| Н1—С1—Н9   | 109.5       | C12—C11—N1   | 120.27 (13) |
| C2-C1-H10  | 109.5       | C20—C11—N1   | 119.30 (15) |
| H1-C1-H10  | 109.5       | C11—C12—C13  | 119.73 (16) |
| H9—C1—H10  | 109.5       | C11—C12—H4   | 120.1       |
| C18—C2—C3  | 117.79 (15) | C13—C12—H4   | 120.1       |
| C18—C2—C1  | 121.21 (17) | C14—C13—C12  | 120.38 (19) |
| C3—C2—C1   | 120.99 (17) | С14—С13—Н3   | 119.8       |
| C4—C3—C2   | 121.26 (16) | С12—С13—Н3   | 119.8       |
| C4—C3—H11  | 119.4       | C13—C14—C21  | 119.64 (18) |
| C2—C3—H11  | 119.4       | C13—C14—H2   | 120.2       |
| C3—C4—C5   | 121.32 (16) | C21—C14—H2   | 120.2       |
| С3—С4—Н6   | 119.3       | O1—C15—C16   | 122.29 (13) |
| С5—С4—Н6   | 119.3       | O1—C15—C7    | 122.50 (14) |
| C4—C5—C19  | 117.09 (14) | C16—C15—C7   | 115.20 (12) |
| C4—C5—C6   | 119.64 (14) | C10—C16—C17  | 104.99 (13) |
| C19—C5—C6  | 123.27 (14) | C10—C16—C15  | 122.98 (13) |
| C7—C6—C5   | 128.94 (14) | C17—C16—C15  | 132.02 (14) |
| C7—C6—H12  | 115.5       | N2—C17—C16   | 111.97 (14) |
| C5—C6—H12  | 115.5       | N2—C17—H5    | 124.0       |
| C6-C7-C15  | 118.02 (14) | С16—С17—Н5   | 124.0       |
| C6—C7—C8   | 125.46 (13) | C2-C18-C19   | 121.22 (16) |
| C15—C7—C8  | 116.51 (13) | C2-C18-H8    | 119.4       |
| C7—C8—C9   | 113.58 (13) | С19—С18—Н8   | 119.4       |
| C7—C8—H13  | 108.8       | C18—C19—C5   | 121.25 (15) |
| C9—C8—H13  | 108.8       | С18—С19—Н7   | 119.4       |
| C7—C8—H14  | 108.8       | С5—С19—Н7    | 119.4       |
| C9—C8—H14  | 108.8       | C21—C20—C11  | 118.89 (19) |
| H13—C8—H14 | 107.7       | C21—C20—H18  | 120.6       |
| C10—C9—C8  | 107.83 (12) | C11—C20—H18  | 120.6       |
| С10—С9—Н15 | 110.1       | C14-C21-C20  | 120.94 (18) |
| C8-C9-H15  | 110.1       | C14-C21-H17  | 1195        |
| C10—C9—H16 | 110.1       | C20—C21—H17  | 119.5       |
| C8—C9—H16  | 110.1       | C10-N1-N2    | 111.28 (12) |
| H15-C9-H16 | 108.5       | C10-N1-C11   | 130.21 (12) |
| N1-C10-C16 | 106.89 (12) | N2-N1-C11    | 118.44(12)  |
| N1-C10-C9  | 129 20 (13) | C17—N2—N1    | 104 86 (12) |
|            | 127.20 (13) | 01/ 11/2 111 | 104.00 (12) |

| C18—C2—C3—C4    | 0.6 (3)      | O1-C15-C16-C10  | -168.78 (15) |
|-----------------|--------------|-----------------|--------------|
| C1—C2—C3—C4     | -178.75 (18) | C7—C15—C16—C10  | 10.8 (2)     |
| C2—C3—C4—C5     | 1.8 (3)      | O1—C15—C16—C17  | 10.0 (3)     |
| C3—C4—C5—C19    | -2.7 (2)     | C7—C15—C16—C17  | -170.40 (16) |
| C3—C4—C5—C6     | 177.62 (15)  | C10-C16-C17-N2  | -0.38 (19)   |
| C4—C5—C6—C7     | -137.43 (18) | C15—C16—C17—N2  | -179.36 (16) |
| C19—C5—C6—C7    | 42.9 (3)     | C3—C2—C18—C19   | -1.9 (3)     |
| C5—C6—C7—C15    | 179.80 (15)  | C1—C2—C18—C19   | 177.42 (17)  |
| C5—C6—C7—C8     | 0.7 (3)      | C2-C18-C19-C5   | 0.9 (3)      |
| C6—C7—C8—C9     | 133.31 (17)  | C4—C5—C19—C18   | 1.3 (2)      |
| C15—C7—C8—C9    | -45.8 (2)    | C6—C5—C19—C18   | -178.96 (15) |
| C7—C8—C9—C10    | 49.38 (18)   | C12-C11-C20-C21 | 0.1 (3)      |
| C8—C9—C10—N1    | 150.39 (16)  | N1-C11-C20-C21  | -178.39 (18) |
| C8—C9—C10—C16   | -26.6 (2)    | C13-C14-C21-C20 | 0.0 (4)      |
| C20-C11-C12-C13 | 0.4 (3)      | C11-C20-C21-C14 | -0.3 (3)     |
| N1-C11-C12-C13  | 178.88 (16)  | C16—C10—N1—N2   | 0.89 (17)    |
| C11—C12—C13—C14 | -0.7 (3)     | C9—C10—N1—N2    | -176.49 (15) |
| C12-C13-C14-C21 | 0.5 (3)      | C16-C10-N1-C11  | -176.18 (15) |
| C6—C7—C15—O1    | 14.8 (2)     | C9—C10—N1—C11   | 6.4 (3)      |
| C8—C7—C15—O1    | -166.01 (16) | C12-C11-N1-C10  | 36.0 (2)     |
| C6—C7—C15—C16   | -164.78 (15) | C20-C11-N1-C10  | -145.48 (17) |
| C8—C7—C15—C16   | 14.4 (2)     | C12-C11-N1-N2   | -140.90 (16) |
| N1-C10-C16-C17  | -0.32 (17)   | C20-C11-N1-N2   | 37.6 (2)     |
| C9—C10—C16—C17  | 177.24 (15)  | C16—C17—N2—N1   | 0.89 (19)    |
| N1-C10-C16-C15  | 178.78 (14)  | C10—N1—N2—C17   | -1.10 (18)   |
| C9—C10—C16—C15  | -3.7 (2)     | C11—N1—N2—C17   | 176.35 (14)  |
|                 |              |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A | D····A      | D—H…A |
|-----------------------------|-------------|-------|-------------|-------|
| C6—H12…O1                   | 0.93        | 2.43  | 2.806 (2)   | 104   |
| C12—H4···O1 <sup>i</sup>    | 0.93        | 2.52  | 3.312 (2)   | 143   |
| C17—H5…O1 <sup>ii</sup>     | 0.93        | 2.60  | 3.5081 (19) | 164   |
| C18—H8····O1 <sup>iii</sup> | 0.93        | 2.46  | 3.325 (2)   | 155   |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1/2; (iii) x, -y, z+1/2.