ISSN 2414-3146

Received 24 March 2022 Accepted 26 April 2022

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; diclofenac; complex; hydrogen bonding..

CCDC reference: 2168795

Structural data: full structural data are available from iucrdata.iucr.org

2-Hydroxyethylammonium [2-(2,6-dichloroanilino)phenyl]acetate monohydrate

Nodira Obidova, Jamshid Ashurov, Lidiya Izotova* and Bakhtiyar Ibragimov

Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125, Tashkent, Uzbekistan. *Correspondence e-mail: li_izotova@mail.ru

In the solid-state structure of the title compound derived from diclofenac, $C_2H_8NO^+ \cdot C_{14}H_{10}Cl_2NO_2^- \cdot H_2O$, the asymmetric unit contains one cation, one anion and a water molecule, all in general positions. A complex network of hydrogen bonds is present in the crystal structure.

Structure description

The pharmaceutical diclofenac (D) is widely used as a non-steroidal anti-inflammatory drug, to treat pain and inflammatory diseases (Skoutakis *et al.*, 1988; Moser *et al.*, 1990). The Cambridge Structural Database (CSD version 5.42, last update February 2021; Groom *et al.*, 2016) includes crystallographic data for 50 entries with the term 'diclofenac'. Among them, there are 21 entries where diclofenac is present in the form of a salt, and in three entries, diclofenac forms salts with aliphatic amines: with (R) and (S)-phenylethylammonium (Lemmerer *et al.*, 2010), with diethyl ammonium (Castellari *et al.*, 2001) and with tris(2-ammonioethyl)amine (Lynch *et al.*, 2003). In this article, we present another complex in the form of a diclofenac salt with an amino-containing compound, namely monoethanolamine. Ethanolamine is always present in significant quantities in the human and animal body with a complete protein diet. Its formation occurs during the decarboxylation of serine, and in one of the metabolic variants, it turns into glycine (the simplest aliphatic amino acid; Wishart *et al.*, 2007). In addition, monoethanolamine is used in some cosmetic products (Knaak *et al.*, 1997). Therefore, the interaction of these compounds seems to be interesting for investigation.

The crystal structure of the title compound has one monoethanolamine (MEA) cation, one 2-(2,6-dichloroanilino)phenyl acetic acid or diclofenac (D) anion, and one water molecule in the asymmetric unit, and crystallizes in space group $P2_1/c$ (Fig. 1). The diclofenac anion is stabilized by one intramolecular hydrogen bond between the amino group and atom O1 of the carboxylic group: N1-H1...O1 [2.884 (3) Å, 128.9°; see

Figure 1

Perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at 40% probability level. The dashed lines represent hydrogen bonds within the asymmetric unit.

Table 1], which forms a seven-membered ring with graph-set notation S(7) (Etter, 1990). The dihedral angle between the two benzene rings in D is 60.2 (2)°.

The ionic form of the title compound serves as a building block for the supramolecular architecture. In the crystal, the building blocks form screw-like chains along the *b*-axis direction, due to the crystallographic twofold screw axis, *via* $N2-H2B\cdotsO1W^{ii}$ hydrogen bond [2.947 (4) Å, symmetry code: (ii) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; Fig. 2 and Table 1]. The chains are further consolidated into two-dimensional layers through N– $H\cdotsO$ and O– $H\cdotsO$ hydrogen bonds. These layers propa-

Figure 2

Packing diagram of the title compound, viewed down b axis. The hydrogen bonds are shown as dashed lines.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
N1-H1···O1	0.86	2.27	2.884 (3)	129
$N2-H2A\cdots O2^{i}$	0.89	1.96	2.811 (4)	160
$N2-H2B\cdotsO1W^{ii}$	0.89	2.15	2.947 (4)	148
$N2-H2C\cdots O1^{iii}$	0.89	1.92	2.802(3)	169
$O3-H3A\cdots O1W$	0.82	1.96	2.770 (4)	168
$O1W-H1WB\cdots O2$	0.85	1.87	2.690 (3)	161
$O1W-H1WA\cdots O1^{iv}$	0.85	2.00	2.809 (3)	158

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) x, y - 1, z; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

gate parallel to the (100) plane, where the chains are related by the glide plane c [O1W···O1^{iv}, symmetry code: (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}; 2.809$ (3) Å] and the inversion centre [N2... O2ⁱ, symmetry code: (i) -x, -y + 1, -z + 1, 2.811 (4) Å, Fig. 2]. The layers are linked by Y-X···Cg π -ring interactions, for C3– H3 and C7–Cl1 bonds, for which the X···Cg separations and γ angles range from 3.533 to 3.958 Å and from 25.03 to 28.79°.

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis was carried out using *Crystal Explorer 17.5* (Turner *et al.*, 2017). The Hirshfeld surface mapped over d_{norm} shows the expected bright-red spots near atoms O1 and O2, involved in the O–H···O and N–H···O hydrogen-bonding interactions (Fig. 3). Fingerprint plots (Fig. 4) reveal that H···H, H···C/C···H, H···Cl/Cl···H and H···O/O···H interactions make the greatest contributions to the surface contacts (Table 1), while H···N/N···H, C···C and O···O contacts are much less significant.

Synthesis and crystallization

To a solution of 0.1 g (0.52 mmol) of D in 4 ml of ethanol, $32 \mu L$ of monoethanolamine was added. The mixture was kept

The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $H \cdots H$ (31.0%), $H \cdots C/C \cdots H$ (26.3%) and $H \cdots Cl/Cl \cdots H$ (25%) interactions.

Figure 4

Full two-dimensional fingerprint plots for the title compound, showing all interactions (a), and delineated into (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots Cl/Cl \cdots H$, (e) $H \cdots O/O \cdots H$, (f) $H \cdots N/N \cdots H$, (g) $C \cdots C$ and (h) $O \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from a given point on the Hirshfeld surface depicted in Fig. 3.

in an ultrasonic bath (30 kHz) at 298 K for 5 min. The solution was then placed in a loosely closed bottle and kept at 298 K for 10 days. The precipitated prismatic crystals were selected for the single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Uzbek Academy of Sciences.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Castellari, C., Comelli, F. & Ottani, S. (2001). Acta Cryst. C57, 437-438.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). *Rev. Environ. Contam. Toxicol.* 149, 1–86.
- Lemmerer, A., Bourne, S. A., Caira, M. R., Cotton, J., Hendricks, U., Peinke, L. C. & Trollope, L. (2010). *CrystEngComm*, 12, 3634–3641.

$C_2H_8NO^+ \cdot C_{14}H_{10}Cl_2NO_2^- \cdot H_2O$
375.24
Monoclinic, $P2_1/c$
293
19.1257 (10), 9.3864 (5), 10.0502 (6)
103.546 (6)
1754.05 (17)
4
Cu Ka
3.53
$0.31 \times 0.28 \times 0.1$
Agilent Technologies Xcalibur, Ruby
Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
0.356, 1.000
12416, 3621, 2431
0.078
0.631
0.051, 0.134, 1.01
3621
222
H-atom parameters constrained
0.40, -0.35

Table 2

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), XP (Siemens, 1994), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

- Lynch, D. E., Bening, A. S. & Parsons, S. (2003). Acta Cryst. E59, 01314–01317.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Moser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358–2368.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Skoutakis, V. A., Carter, C. A., Mickle, T. R., Smith, V. H., Arkin, C. R., Alissandratos, J. & Petty, D. E. (1988). *Drug Intell. Clin. Pharm.* 22, 850–859.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17.5*. University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. Ch., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., Macinnis, G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D., Vogel, H. J. & Querengesser, L. (2007). *Nucleic Acids Res.* 35, D521–D526.

full crystallographic data

IUCrData (2022). 7, x220441 [https://doi.org/10.1107/S2414314622004412]

2-Hydroxyethylammonium [2-(2,6-dichloroanilino)phenyl]acetate monohydrate

Nodira Obidova, Jamshid Ashurov, Lidiya Izotova and Bakhtiyar Ibragimov

2-Hydroxyethylammonium [2-(2,6-dichloroanilino)phenyl]acetate monohydrate

Crystal data	
$C_{2}H_{8}NO^{+} \cdot C_{14}H_{10}Cl_{2}NO_{2}^{-} \cdot H_{2}O$ $M_{r} = 375.24$ Monoclinic, $P2_{1}/c$ a = 19.1257 (10) Å b = 9.3864 (5) Å c = 10.0502 (6) Å $\beta = 103.546 (6)^{\circ}$ $V = 1754.05 (17) Å^{3}$ Z = 4	F(000) = 784 $D_x = 1.421 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2166 reflections $\theta = 4.7-73.9^{\circ}$ $\mu = 3.53 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.31 \times 0.28 \times 0.1 \text{ mm}$
Data collection	
Agilent Technologies Xcalibur, Ruby diffractometer Radiation source: fine-focus sealed tube /w scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{min} = 0.356, T_{max} = 1.000$ 12416 measured reflections	3621 independent reflections 2431 reflections with $I > 2\sigma(I)$ $R_{int} = 0.078$ $\theta_{max} = 76.5^{\circ}, \theta_{min} = 4.8^{\circ}$ $h = -23 \rightarrow 24$ $k = -11 \rightarrow 6$ $l = -12 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.134$ S = 1.01 3621 reflections 222 parameters 0 restraints Primary atom site location: dual	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0614P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å ⁻³ $\Delta\rho_{min} = -0.35$ e Å ⁻³

Special details

Refinement. All hydrogen atoms were placed in idealized positions and refined as riding to their carrier atoms.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.46202 (4)	0.95109 (8)	0.76764 (8)	0.0441 (2)	
Cl2	0.24250 (4)	1.20690 (9)	0.40514 (9)	0.0500 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

01	0.15000 (11)	0.9926 (2)	0.5897 (2)	0.0472 (6)
O1W	0.07192 (13)	0.6316 (3)	0.8457 (2)	0.0558 (6)
H1WA	0.103624	0.612215	0.917982	0.084*
H1WB	0.085392	0.710654	0.818732	0.084*
N1	0.30390 (13)	0.9959 (2)	0.6226 (3)	0.0379 (6)
H1	0.269351	1.041181	0.645204	0.045*
02	0.08825 (11)	0.8748 (3)	0.7146 (2)	0.0592 (7)
N2	0.03573 (14)	0.1808 (3)	0.4921 (3)	0.0446 (6)
H2A	0.003371	0.148791	0.419647	0.054*
H2B	0.015651	0.187499	0.563284	0.054*
H2C	0.072670	0.120586	0.512028	0.054*
03	0.07091 (17)	0.3857 (3)	0.6928 (3)	0.0762 (9)
H3A	0.073883	0.464400	0.729146	0.114*
C2	0.42880 (15)	1.0634 (3)	0.6305 (3)	0.0327 (6)
C14	0.14604 (15)	0.9162 (3)	0.6906 (3)	0.0371 (7)
C1	0.35476 (15)	1.0754 (3)	0.5751 (3)	0.0322 (6)
C12	0.26283 (14)	0.7823 (3)	0.7158 (3)	0.0342 (6)
C7	0.30532 (15)	0.8463 (3)	0.6360 (3)	0.0342 (6)
C8	0.34720 (15)	0.7613 (3)	0.5707 (3)	0.0382 (7)
H8	0.374195	0.803323	0.515422	0.046*
C6	0.33381 (16)	1.1786 (3)	0.4739 (3)	0.0359 (6)
C13	0.21653 (15)	0.8708 (3)	0.7865 (3)	0.0383 (7)
H13A	0.243062	0.955166	0.824815	0.046*
H13B	0.206067	0.816317	0.861507	0.046*
C9	0.34871 (16)	0.6146 (3)	0.5877 (3)	0.0447 (8)
Н9	0.377768	0.559121	0.546037	0.054*
C5	0.38298 (18)	1.2604 (3)	0.4257 (3)	0.0430 (7)
Н5	0.366991	1.328721	0.358405	0.052*
C4	0.45510 (18)	1.2404 (3)	0.4774 (3)	0.0459 (8)
H4	0.488229	1.292653	0.442936	0.055*
C3	0.47873 (16)	1.1423 (3)	0.5811 (3)	0.0408 (7)
Н3	0.527698	1.129421	0.617432	0.049*
C11	0.26455 (17)	0.6344 (3)	0.7292 (3)	0.0436 (8)
H11	0.236429	0.590723	0.781473	0.052*
C10	0.30743 (18)	0.5508 (3)	0.6661 (3)	0.0488 (8)
H10	0.308209	0.452307	0.676839	0.059*
C16	0.06160 (19)	0.3234 (3)	0.4609 (4)	0.0515 (8)
H16A	0.020800	0.385304	0.426179	0.062*
H16B	0.088673	0.314490	0.390895	0.062*
C15	0.1082 (2)	0.3869 (4)	0.5871 (4)	0.0593 (10)
H15A	0.152356	0.332453	0.614785	0.071*
H15B	0.120699	0.483999	0.568925	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Cl1	0.0413 (4)	0.0418 (4)	0.0442 (4)	0.0030 (3)	0.0002 (3)	0.0044 (3)
C12	0.0424 (4)	0.0481 (5)	0.0552 (5)	0.0075 (3)	0.0025 (4)	0.0094 (4)

01	0.0363 (12)	0.0534 (14)	0.0497 (13)	0.0053 (10)	0.0057 (10)	0.0195 (11)
O1W	0.0600 (15)	0.0558 (16)	0.0496 (15)	-0.0060 (12)	0.0087 (12)	0.0047 (11)
N1	0.0349 (13)	0.0309 (13)	0.0525 (15)	0.0053 (10)	0.0196 (12)	0.0055 (11)
O2	0.0325 (12)	0.0799 (18)	0.0625 (16)	-0.0032 (11)	0.0054 (11)	0.0235 (13)
N2	0.0409 (14)	0.0497 (16)	0.0404 (15)	0.0072 (12)	0.0037 (12)	-0.0030 (12)
03	0.106 (2)	0.0641 (18)	0.0689 (18)	-0.0190 (17)	0.0403 (17)	-0.0214 (14)
C2	0.0376 (15)	0.0276 (14)	0.0331 (15)	0.0030 (12)	0.0087 (12)	-0.0018 (12)
C14	0.0317 (15)	0.0414 (17)	0.0364 (17)	0.0012 (13)	0.0043 (13)	-0.0003 (13)
C1	0.0351 (15)	0.0267 (14)	0.0347 (15)	0.0014 (11)	0.0080 (12)	-0.0029 (11)
C12	0.0283 (14)	0.0355 (16)	0.0351 (16)	0.0000 (12)	-0.0003 (12)	0.0050 (12)
C7	0.0300 (14)	0.0310 (15)	0.0377 (16)	0.0010 (11)	0.0002 (12)	0.0027 (12)
C8	0.0328 (15)	0.0415 (17)	0.0389 (17)	0.0001 (13)	0.0056 (13)	-0.0017 (13)
C6	0.0373 (15)	0.0322 (15)	0.0374 (16)	0.0013 (12)	0.0071 (13)	-0.0013 (12)
C13	0.0352 (15)	0.0428 (17)	0.0351 (16)	-0.0017 (13)	0.0044 (13)	0.0068 (13)
C9	0.0415 (17)	0.0377 (17)	0.0498 (19)	0.0045 (14)	0.0004 (15)	-0.0099 (15)
C5	0.057 (2)	0.0333 (16)	0.0410 (18)	-0.0019 (14)	0.0157 (16)	0.0027 (13)
C4	0.0494 (19)	0.0401 (18)	0.053 (2)	-0.0111 (15)	0.0226 (17)	-0.0036 (15)
C3	0.0346 (16)	0.0380 (17)	0.0505 (19)	-0.0056 (13)	0.0115 (14)	-0.0067 (14)
C11	0.0441 (18)	0.0387 (17)	0.0447 (19)	-0.0035 (14)	0.0039 (15)	0.0110 (14)
C10	0.052 (2)	0.0313 (16)	0.058 (2)	-0.0001 (14)	0.0025 (17)	0.0041 (15)
C16	0.059 (2)	0.0442 (19)	0.049 (2)	0.0028 (16)	0.0073 (17)	0.0046 (15)
C15	0.055 (2)	0.064 (2)	0.058 (2)	-0.0107 (18)	0.0104 (18)	-0.0099 (19)

Geometric parameters (Å, °)

Cl1—C2	1.734 (3)	C7—C8	1.398 (4)
Cl2—C6	1.741 (3)	C8—C9	1.387 (4)
O1-C14	1.259 (3)	C8—H8	0.9300
O1W—H1WA	0.8501	C6—C5	1.387 (4)
O1W—H1WB	0.8504	C13—H13A	0.9700
N1-C1	1.396 (3)	C13—H13B	0.9700
N1—C7	1.410 (3)	C9—C10	1.377 (4)
N1—H1	0.8600	С9—Н9	0.9300
O2—C14	1.248 (3)	C5—C4	1.368 (5)
N2-C16	1.486 (4)	С5—Н5	0.9300
N2—H2A	0.8900	C4—C3	1.384 (4)
N2—H2B	0.8900	C4—H4	0.9300
N2—H2C	0.8900	С3—Н3	0.9300
O3—C15	1.412 (4)	C11—C10	1.391 (5)
O3—H3A	0.8200	C11—H11	0.9300
C2—C3	1.389 (4)	C10—H10	0.9300
C2-C1	1.400 (4)	C16—C15	1.494 (5)
C14—C13	1.523 (4)	C16—H16A	0.9700
C1—C6	1.394 (4)	C16—H16B	0.9700
C12—C11	1.395 (4)	C15—H15A	0.9700
С12—С7	1.403 (4)	C15—H15B	0.9700
C12—C13	1.508 (4)		

H1WA—O1W—H1WB	104.5	C14—C13—H13A	109.0
C1—N1—C7	124.4 (2)	C12—C13—H13B	109.0
C1—N1—H1	117.8	C14—C13—H13B	109.0
C7—N1—H1	117.8	H13A—C13—H13B	107.8
C16—N2—H2A	109.5	C10-C9-C8	120.3 (3)
C_{16} N2 H2R	109.5	C10-C9-H9	119.8
$H_{2}A = N_{2} = H_{2}B$	109.5	C8-C9-H9	119.8
C_{16} N2 H2C	109.5	C4-C5-C6	119.8 (3)
$H_2A = N_2 = H_2C$	109.5	C4	120.1
H2B N2 H2C	109.5	C6-C5-H5	120.1
$C_{15} O_{3} H_{3} \Lambda$	109.5	$C_5 C_4 C_3$	120.1 120.0(3)
$C_{13} = C_{2} = C_{13}$	109.5 122 1 (3)	$C_{5} = C_{4} = C_{5}$	120.0 (3)
$C_{3} = C_{2} = C_{1}$	122.1(3) 117.0(2)	$C_3 = C_4 = H_4$	120.0
$C_{1} = C_{2} = C_{11}$	117.0(2)	$C_3 - C_4 - \Pi_4$	120.0
$C_1 = C_2 = C_1 $	120.9(2)	C4 - C3 - C2	119.5 (5)
02 - C14 - O1	123.9(3)	C4 - C3 - H3	120.2
02 - C14 - C13	118.9 (3)	$C_2 - C_3 - H_3$	120.2
OI - CI4 - CI3	117.2 (3)	C10-C11-C12	121.4 (3)
C6—C1—N1	121.1 (3)	CIO-CII-HII	119.3
C6—C1—C2	115.9 (3)		119.3
N1—C1—C2	122.8 (3)	C9—C10—C11	119.6 (3)
C11—C12—C7	118.5 (3)	C9—C10—H10	120.2
C11—C12—C13	120.4 (3)	C11—C10—H10	120.2
C7—C12—C13	121.1 (3)	N2—C16—C15	110.0 (3)
C8—C7—C12	119.7 (3)	N2—C16—H16A	109.7
C8—C7—N1	121.6 (3)	C15—C16—H16A	109.7
C12—C7—N1	118.7 (3)	N2—C16—H16B	109.7
C9—C8—C7	120.4 (3)	C15—C16—H16B	109.7
С9—С8—Н8	119.8	H16A—C16—H16B	108.2
С7—С8—Н8	119.8	O3—C15—C16	109.2 (3)
C5—C6—C1	122.5 (3)	O3—C15—H15A	109.8
C5—C6—Cl2	118.4 (2)	C16—C15—H15A	109.8
C1—C6—Cl2	119.1 (2)	O3—C15—H15B	109.8
C12—C13—C14	112.7 (2)	C16—C15—H15B	109.8
С12—С13—Н13А	109.0	H15A—C15—H15B	108.3
C7—N1—C1—C6	131.3 (3)	C2—C1—C6—Cl2	-176.9(2)
C7—N1—C1—C2	-52.7 (4)	C11—C12—C13—C14	-100.2(3)
C3—C2—C1—C6	-4.4 (4)	C7—C12—C13—C14	80.1 (3)
Cl1—C2—C1—C6	174.1 (2)	O2—C14—C13—C12	117.9 (3)
$C_{3}-C_{2}-C_{1}-N_{1}$	179.4 (3)	01-C14-C13-C12	-61.2(4)
$C_{11} - C_{2} - C_{1} - N_{1}$	-21(4)	C7 - C8 - C9 - C10	18(4)
$C_{11} - C_{12} - C_{7} - C_{8}$	0.9(4)	C1 - C6 - C5 - C4	0.3(5)
C_{13} C_{12} C_{7} C_{8}	-1794(3)	C^{12} C^{6} C^{5} C^{4}	-179.8(2)
$C_{11} - C_{12} - C_{7} - N_{1}$	-1798(3)	C6-C5-C4-C3	-2.4(5)
C_{13} C_{12} C_{7} N_{1}	-0.1(4)	$C_{5} - C_{4} - C_{3} - C_{2}^{2}$	0.9(5)
C1 - N1 - C7 - C8	-166(4)	$C_{1} - C_{2} - C_{3} - C_{4}$	26(4)
C1 - N1 - C7 - C12	164.1 (3)	C1 C2 C3 C4	-1760(2)
$C_1^{-1}C_1^$	-20(4)	C7 C12 C11 C10	170.0(2)
012 - 07 - 07 - 07	2.0 (4)	-012 - 011 - 010	0.5 (4)

data reports

N1—C7—C8—C9	178.7 (3)	C13—C12—C11—C10	-179.3 (3)
N1—C1—C6—C5	179.3 (3)	C8—C9—C10—C11	-0.5 (5)
C2-C1-C6-C5	3.0 (4)	C12—C11—C10—C9	-0.5 (5)
N1—C1—C6—Cl2	-0.6 (4)	N2-C16-C15-O3	-53.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1…O1	0.86	2.27	2.884 (3)	129
N2—H2A····O2 ⁱ	0.89	1.96	2.811 (4)	160
N2—H2 B ····O1 W ⁱⁱ	0.89	2.15	2.947 (4)	148
N2—H2 <i>C</i> ···O1 ⁱⁱⁱ	0.89	1.92	2.802 (3)	169
O3—H3 <i>A</i> …O1 <i>W</i>	0.82	1.96	2.770 (4)	168
O1 <i>W</i> —H1 <i>WB</i> ···O2	0.85	1.87	2.690 (3)	161
$O1W$ — $H1WA$ ··· $O1^{iv}$	0.85	2.00	2.809 (3)	158

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, y-1/2, -z+3/2; (iii) x, y-1, z; (iv) x, -y+3/2, z+1/2.