ISSN 2414-3146

Received 22 April 2022 Accepted 16 May 2022

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; λ^5 -iodinane; diaryliodosyl salt; sulfide oxidation.

CCDC reference: 2173122

Structural data: full structural data are available from iucrdata.iucr.org

data reports

(Phenyliodosyl)benzene tosylate dihydrate

Timothy J. Smith,^a* Gerald Koser,^a Yi Chen,^b Matthias Zeller,^c Rocco Iacino^a and Nichole Selzer^a

^aSchool of Math and Science, Walsh University, 2020 East Maple Street, North Canton, OH 44720, USA, ^bDepartment of Chemistry, University of Akron, 190 E. Buchtel Ave, Akron, OH 44304, USA, and ^cDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907-2084, USA. *Correspondence e-mail: tsmith@walsh.edu

The structure of the title salt (systematic name: oxodiphenyl- λ^5 -iodanylium 4methylbenzenesulfonate dihydrate), C₁₂H₁₀IO⁺·C₇H₇O₃S⁻·2H₂O, at 150 K, has monoclinic (*P*2₁/*c*) symmetry. The molecular structure features an angular (phenyliodosyl)benzene cation, the geometry of which was hitherto undescribed in the literature: in the cation, both I–C bonds are approximately normal to the I=O bond, forming a C–I–C angle of 95.36 (4)°. The crystal structure displays O–H···O, O–H···I and O–H···S hydrogen bonding.

Structure description

The crystal structure of (phenyliodosyl)benzene tosylate dihydrate (1) is shown in Fig. 1. A partial packing structure is shown in Fig. 2. The title compound 1 crystallizes from water *via* slow cooling to 293 K to the monoclinic crystal system with space group $P2_1/c$. This iodosyl salt arose from the reaction of iodoxybenzene with sodium hydroxide (Fig. 3). The intermediate formed was captured with *p*-toluene sulfonic acid, generating 1.

In compound **1** there are two phenyl rings connected to the iodine centre, C1-I1-C7, with a bond angle of 95.36 (4)°. The bond lengths of C1-I1 and C7-I1 are 2.1289 (11) and 2.1370 (12) Å, respectively. These values are comparable to the sum of the van der Waals radii (2.05 Å; Bondi, 1964). These bond lengths are comparable to those found in 1,1,1-triacetoxy1,1-dihydro-1,2-benzoiodoxol-3(1*H*)-one, *i.e.* the Dess-Martin periodinane, with a C-I bond length between the phenyl and iodine of 2.1025 (16) Å (Schröckeneder *et al.*, 2012). A secondary bonding interaction with the *p*-toluene sulfonate anion, $O4\cdots I1$ [2.7076 (10) Å], resides nearly perpendicular at 77.55 (4)° to the I1-O1 bond. This bond length is shorter than the sum (3.05 Å) of the covalent radii, and this is analogous to secondary bonding that was observed by Rentzeperis in his bis(diphenyliodonium *I*-oxide) diacetate trihydrate, between the acetate anion and the iodo-

Figure 1

The title compound 1 with 50% displacement ellipsoids. All hydrogen labels are omitted for clarity.

nium I-oxide centre (Bozopoulos & Rentzeperis, 1987). Zhdankin found similar bond lengths of coordination between the trifluoromethanesulfonate oxygen anion and the cationic iodonium centre (2.797 Å) in [(arvlsulfonvl)methyl](phenyl)iodonium trifluoromethanesulfonate (Zhdankin et al., 1997). Additionally, Rentzeperis found similar coordinating distances with this acetate ion [2.449 (7) Å] and the oxygen atoms of the three water molecules, at 2.449 (7), 2.732 (9) and 2.732 (7) Å, respectively (Bozopoulos & Rentzeperis, 1987). In the title compound, the I1-O1 bond of 1.8108 (9) Å indicates double-bond character, as the computed doublebond length via van der Waals radii predicts 1.86 Å (Bondi, 1964). Rentzeperis found a similar bond length, 1.842 (6) Å, in bis(diphenyliodonium I-oxide) diacetate trihydrate (Bozopoulos & Rentzeperis, 1987).

Zhdankin synthesized a tosylate derivative of 2-iodoxybenzoic acid. Crystals of the final product could not be isolated, but the intermediate mixed tosylate-acetate derivative was analysed. The I-O bond lengths in this iodine(V) compound had distances of 2.080 (2), 2.213 (2), 2.027 (2) and 1.998 (2) Å (Yusubov et al., 2013). These values are in accordance with a single-bond interaction of iodine with oxygen, further indicating that the I-O bond distance in 1 is of a double-bond nature. Additionally, bond lengths being shorter than predicted in hypervalent iodine compounds have been studied previously (Koser et al., 1976). Koser confirmed the

The unit cell as viewed down the *a* axis showing intermolecular hydrogen bonds as dashed lines.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O2-H2A\cdots O3^{i}$	0.86 (2)	1.92 (2)	2.7563 (14)	165 (2)
$O2-H2B\cdots I1^{ii}$	0.85(2)	3.14 (2)	3.9397 (10)	158.1 (18)
$O2-H2B\cdots O1^{ii}$	0.85(2)	1.91 (2)	2.7443 (14)	169 (2)
$O3-H3A\cdots S1^{i}$	0.84(2)	3.00 (2)	3.7847 (11)	155.7 (17)
$O3-H3A\cdots O5^{i}$	0.84 (2)	1.92 (2)	2.7625 (15)	174.6 (19)
$O3-H3B\cdots S1^{iii}$	0.79 (2)	2.89 (2)	3.5812 (10)	147.5 (18)
$O3-H3B\cdots O6^{iii}$	0.79 (2)	1.99 (2)	2.7776 (14)	171 (2)

(iii) Symmetry codes: (i) -x+1, -y+1, -z+1;(ii) x - 1, y, z: -x + 2 - v + 1 - z + 1

I-O single bond length was shorter (1.91 Å) than the computed distance (1.96 Å) in his seminal work on hydroxy(tosyloxy)iodobenzene. Additionally, in 1, secondary coordination of the iodonium I-oxide centre with neighbouring water molecules indicates a close contact via the $I1 \cdots O2$ and $I1 \cdots O3$ with bond distances of 2.5674 (10) and 2.8118 (10) Å, respectively.

The title compound forms a distorted octahedral geometry in accordance with comparison to a VSEPR model. The O1-I1-O2 bond angle of 175.27 (4)°, the C7-I1-O3 angle of $176.33 (4)^{\circ}$, the O1-I1-O4 angle of 77.55 (4)° with the coordinating tosylate anion and the C1-I1-C7 angle of $95.36~(4)^{\circ}$ complete the distorted octahedral geometry. The accompanying tosylate anion and water molecules occupy apical and equatorial positions to stabilize the monomeric complex. Bis(diphenyliodonium I-oxide) diacetate trihydrate also adopted a distorted octahedral geometry, albeit via a dimeric coordinating structure (Bozopoulos & Rentzeperis, 1987). In this complex, the asymmetric units form distorted trigonal-pyramidal arrangements, where the iodine atoms occupy the apices, resembling the IO_3^- iodate anion. Secondary I...O interactions complete the distorted octahedral geometry around each individual iodine atom. The title complex 1 does not dimerize like the Rentzeperis compound, most likely due to the bulky nature of the coordinating tosylate anion, along with additional hydrogen bonding of the sulfone O atoms and water O atoms with neighbouring water molecules.

Examination of the molecular packing as illustrated in Fig. 2 shows $O3^{i} \cdots H2A$ and $O6^{iii} \cdots H3B$ contacts, with $O \cdots H$ distances of 1.92 (2) and 1.99 (2) Å, respectively, as viewed down the a axis (Fig. 2 and Table 1). These two coordinations inhibit aggregation of the iodonium centres as seen in bis(diphenyliodonium I-oxide) diacetate trihydrate (Bozopoulos & Rentzeperis, 1987).

Synthesis and crystallization

(Phenyliodosyl)benzene tosylate dihydrate was synthesized according to a modified procedure by Chen (2007) and is illustrated in Fig. 3. Iodobenzene (2.04 g, 10 mmol) was added to a water solution (20 ml) of sodium metaperiodate (4.7 g, 22 mmol) with a small amount of toluene (0.3 ml) to minimize steam distillation. The reaction was heated to reflux for 18 h

Figure 3 The synthetic route to obtain the title compound **1**.

and then cooled to room temperature. To the cooled reaction flask were added 50 ml of ice-cold water, and the white crystals that formed were filtered, washed with cold water (20 ml), cold chloroform (10 ml), and air-dried in a dark room until a constant weight was found (2.08 g, 8.81 mmol, 88% yield). The crude material was used in the next step without further purification. The iodoxybenzene (2.08 g, 8.81 mmol) was added to a stirred solution of 1 N NaOH (18.7 ml) pre-cooled to 277 K. The reaction was stirred for 1 h maintaining the temperature of the reaction below 281 K. The NaIO₃ that formed was filtered off. The filtrate was poured into a roundbottomed flask equipped with a magnetic stir bar and cooled to 277 K. With vigorous stirring p-toluene sulfonic acid monohydrate (2.87 g, 15.08 mmol) was added to the cooled filtrate and a white precipitate formed. The suspension was stirred for an additional 30 min and then filtered. The compound was washed with a minimal amount of diethyl ether (10 ml) and ice-cold water (10 ml). The product (1.75 g, 3.47 mmol, 47.5% yield) matched known ¹H, ¹³C and FTIR data (Chen, 2007). A sample for crystallographic analysis was prepared by dissolving the sample in a minimal amount of boiling water and allowing for slow cooling in an insulated thermal bath, insuring that the temperature took at least two days to return to room temperature. After additional cooling at room temperature for four days, the crystals that formed were suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer).

Funding information

Funding for this research was provided by: Walsh University (grant No. 2019 Faculty Scholars to TJ Smith).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Table 2	
Experimental details.	

Crystal data	
Chemical formula	$C_{12}H_{10}IO^+ \cdot C_7H_7O_3S^- \cdot 2H_2O$
M _r	504.32
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	6.1823 (3), 24.9509 (11),
	12.7606 (6)
β(°)	100.257 (2)
$V(Å^3)$	1936.92 (16)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.79
Crystal size (mm)	$0.23\times0.18\times0.15$
Data collection	
Diffractometer	Bruker AXS D8 Quest diffract- ometer with PhotonII charge-
	integrating pixel array detector (CPAD)
Absorption correction	Multi-scan (SADABS; Bruker, 2021)
T_{\min}, T_{\max}	0.644, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	55248, 7429, 6815
R _{int}	0.033
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.772
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.042, 1.09
No. of reflections	7429
No. of parameters	258
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.49, -0.39

Computer programs: *APEX4* and *SAINT* (Bruker, 2021), *SHELXT2018/2* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2020) and *publCIF* (Westrip, 2010).

- Bozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142-144.
- Bruker (2021). APEX4, SADABS and SAINT, Bruker Nano Inc., Madison, Wisconsin, USA.
- Chen, Y. (2007). PhD thesis, The University of Akron, Akron, Ohio, United States.
- Koser, G. F., Wettach, R. H., Troup, J. M. & Frenz, B. A. (1976). J. Org. Chem. 41, 3609–3611.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Schröckeneder, A., Stichnoth, D., Mayer, P. & Trauner, D. (2012). Beilstein J. Org. Chem. 8, 1523–1527.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yusubov, M. S., Svitich, D. Y., Yoshimura, A., Nemykin, V. N. & Zhdankin, V. V. (2013). *Chem. Commun.* 49, 11269–11271.
- Zhdankin, V. V., Erickson, S. A. & Hanson, K. J. (1997). J. Am. Chem. Soc. **119**, 4775–4776.

full crystallographic data

IUCrData (2022). 7, x220522 [https://doi.org/10.1107/S2414314622005223]

(Phenyliodosyl)benzene tosylate dihydrate

Timothy J. Smith, Gerald Koser, Yi Chen, Matthias Zeller, Rocco Iacino and Nichole Selzer

Oxodiphenyl- λ^5 -iodanylium 4-methylbenzenesulfonate dihydrate

Crystal data

 $C_{12}H_{10}IO^+ \cdot C_7H_7O_3S^- \cdot 2H_2O$ $M_r = 504.32$ Monoclinic, $P2_1/c$ a = 6.1823 (3) Å b = 24.9509 (11) Å c = 12.7606 (6) Å $\beta = 100.257$ (2)° V = 1936.92 (16) Å³ Z = 4

Data collection

Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Radiation source: fine focus sealed tube X-ray source Triumph curved graphite crystal monochromator Detector resolution: 7.4074 pixels mm⁻¹ ω and φ scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.042$ S = 1.097429 reflections 258 parameters 0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed F(000) = 1008 $D_x = 1.729 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9659 reflections $\theta = 3.4-33.2^{\circ}$ $\mu = 1.79 \text{ mm}^{-1}$ T = 150 KFragment, colourless $0.23 \times 0.18 \times 0.15 \text{ mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2021) $T_{\min} = 0.644$, $T_{\max} = 0.747$ 55248 measured reflections 7429 independent reflections 6815 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{\max} = 33.3^{\circ}$, $\theta_{\min} = 2.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -38 \rightarrow 38$ $l = -19 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0115P)^2 + 1.2666P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.49$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³ Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.00186 (16)

Special details

Refinement. H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms. C — H bond distances were constrained to 0.95 Å for aromatic CH moieties, and to 0.98 Å for the CH₃ group, respectively. Water H atom positions were freely refined. U_{iso} (H) values were set to a multiple of U_{eq} (carrier C/O), with 1.5 for CH₃ and OH, and 1.2 for CH units, respectively.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.68788 (2)	0.46909 (2)	0.68867 (2)	0.01154 (3)	
S1	0.78701 (5)	0.36098 (2)	0.47914 (2)	0.01522 (5)	
01	0.97764 (14)	0.46950 (4)	0.74614 (8)	0.01780 (17)	
O2	0.27627 (16)	0.47673 (4)	0.61133 (8)	0.01981 (18)	
H2A	0.242 (3)	0.4622 (8)	0.5495 (17)	0.030*	
H2B	0.173 (3)	0.4724 (8)	0.6458 (17)	0.030*	
O3	0.75786 (17)	0.56665 (4)	0.58959 (8)	0.01987 (18)	
H3A	0.665 (3)	0.5916 (8)	0.5781 (16)	0.030*	
H3B	0.869 (4)	0.5829 (8)	0.6024 (16)	0.030*	
O4	0.86090 (18)	0.40372 (4)	0.55568 (8)	0.02297 (19)	
05	0.55011 (16)	0.35301 (5)	0.46211 (10)	0.0294 (2)	
O6	0.87304 (16)	0.36783 (4)	0.38086 (7)	0.02007 (18)	
C1	0.5945 (2)	0.51811 (5)	0.80971 (9)	0.0142 (2)	
C2	0.7369 (2)	0.51635 (6)	0.90699 (11)	0.0212 (2)	
H2	0.862288	0.493668	0.917364	0.025*	
C3	0.6902 (3)	0.54883 (6)	0.98885 (11)	0.0249 (3)	
H3	0.783620	0.548237	1.056562	0.030*	
C4	0.5077 (3)	0.58201 (6)	0.97162 (11)	0.0236 (3)	
H4	0.477050	0.604223	1.027645	0.028*	
C5	0.3694 (2)	0.58310 (6)	0.87349 (12)	0.0229 (3)	
H5	0.244730	0.606019	0.862871	0.027*	
C6	0.4115 (2)	0.55088 (5)	0.79013 (10)	0.0182 (2)	
H6	0.317967	0.551429	0.722456	0.022*	
C7	0.6142 (2)	0.39479 (5)	0.75784 (9)	0.0139 (2)	
C8	0.7930 (2)	0.37027 (5)	0.82033 (10)	0.0187 (2)	
H8	0.934473	0.386350	0.830739	0.022*	
C9	0.7592 (3)	0.32126 (6)	0.86755 (11)	0.0235 (3)	
H9	0.878788	0.303693	0.911211	0.028*	
C10	0.5521 (3)	0.29802 (5)	0.85114 (11)	0.0231 (3)	
H10	0.530416	0.264622	0.883500	0.028*	
C11	0.3762 (2)	0.32346 (5)	0.78748 (11)	0.0217 (2)	
H11	0.234867	0.307259	0.776581	0.026*	
C12	0.4048 (2)	0.37264 (5)	0.73933 (10)	0.0178 (2)	
H12	0.285534	0.390249	0.695560	0.021*	
C13	0.90551 (19)	0.30148 (5)	0.53950 (9)	0.0143 (2)	
C14	1.1068 (2)	0.28329 (5)	0.51879 (10)	0.0166 (2)	
H14	1.177697	0.301415	0.468824	0.020*	
C15	1.2027 (2)	0.23823 (5)	0.57228 (10)	0.0180 (2)	
H15	1.339293	0.225549	0.557827	0.022*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	1.1023 (2)	0.21125 (5)	0.64677 (10)	0.0180 (2)
C17	0.8999 (2)	0.23004 (5)	0.66564 (11)	0.0195 (2)
H17	0.828525	0.211958	0.715483	0.023*
C18	0.8014 (2)	0.27479 (5)	0.61256 (10)	0.0172 (2)
H18	0.663586	0.287143	0.626024	0.021*
C19	1.2112 (3)	0.16377 (6)	0.70690 (13)	0.0283 (3)
H19A	1.137702	0.155730	0.767074	0.042*
H19B	1.366266	0.171982	0.733455	0.042*
H19C	1.200511	0.132671	0.659362	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.00981 (3)	0.01211 (4)	0.01291 (4)	-0.00066 (2)	0.00260 (2)	-0.00161 (2)
S1	0.01308 (12)	0.01470 (12)	0.01821 (13)	0.00026 (10)	0.00368 (10)	0.00096 (10)
01	0.0086 (3)	0.0232 (4)	0.0211 (4)	-0.0009 (3)	0.0013 (3)	-0.0040 (3)
O2	0.0141 (4)	0.0254 (5)	0.0199 (4)	-0.0026 (4)	0.0030 (3)	-0.0025 (4)
O3	0.0179 (4)	0.0171 (4)	0.0250 (5)	-0.0021 (4)	0.0049 (4)	0.0001 (3)
O4	0.0306 (5)	0.0158 (4)	0.0245 (5)	0.0005 (4)	0.0104 (4)	-0.0040 (4)
05	0.0127 (4)	0.0304 (6)	0.0440 (6)	0.0006 (4)	0.0024 (4)	0.0130 (5)
O6	0.0234 (4)	0.0212 (4)	0.0160 (4)	0.0004 (4)	0.0045 (3)	0.0021 (3)
C1	0.0147 (5)	0.0131 (5)	0.0153 (5)	-0.0004 (4)	0.0040 (4)	-0.0032 (4)
C2	0.0196 (6)	0.0242 (6)	0.0186 (6)	0.0043 (5)	0.0000 (4)	-0.0052 (5)
C3	0.0286 (7)	0.0280 (7)	0.0170 (6)	0.0019 (6)	0.0013 (5)	-0.0069 (5)
C4	0.0305 (7)	0.0209 (6)	0.0216 (6)	0.0003 (5)	0.0108 (5)	-0.0067 (5)
C5	0.0238 (6)	0.0192 (6)	0.0270 (6)	0.0055 (5)	0.0080 (5)	-0.0035 (5)
C6	0.0177 (5)	0.0174 (5)	0.0192 (5)	0.0029 (4)	0.0026 (4)	-0.0014 (4)
C7	0.0162 (5)	0.0127 (5)	0.0132 (5)	0.0003 (4)	0.0036 (4)	-0.0007 (4)
C8	0.0184 (5)	0.0180 (5)	0.0194 (6)	0.0027 (4)	0.0027 (4)	0.0006 (4)
C9	0.0288 (7)	0.0201 (6)	0.0214 (6)	0.0073 (5)	0.0037 (5)	0.0040 (5)
C10	0.0350 (7)	0.0162 (5)	0.0204 (6)	0.0015 (5)	0.0110 (5)	0.0022 (4)
C11	0.0252 (6)	0.0170 (6)	0.0242 (6)	-0.0047 (5)	0.0084 (5)	-0.0009 (5)
C12	0.0174 (5)	0.0161 (5)	0.0199 (5)	-0.0015 (4)	0.0033 (4)	0.0000 (4)
C13	0.0140 (5)	0.0130 (5)	0.0160 (5)	-0.0011 (4)	0.0028 (4)	-0.0010 (4)
C14	0.0152 (5)	0.0169 (5)	0.0187 (5)	-0.0009 (4)	0.0055 (4)	0.0002 (4)
C15	0.0150 (5)	0.0193 (6)	0.0201 (6)	0.0022 (4)	0.0046 (4)	-0.0005 (4)
C16	0.0208 (6)	0.0152 (5)	0.0181 (5)	0.0013 (4)	0.0037 (4)	-0.0003 (4)
C17	0.0225 (6)	0.0170 (5)	0.0208 (6)	-0.0004 (5)	0.0092 (5)	0.0010 (4)
C18	0.0159 (5)	0.0168 (5)	0.0203 (5)	-0.0001 (4)	0.0069 (4)	0.0001 (4)
C19	0.0334 (8)	0.0234 (7)	0.0292 (7)	0.0094 (6)	0.0090 (6)	0.0083 (5)

Geometric parameters (Å, °)

I1—01	1.8108 (9)	C7—C8	1.3849 (17)
I1—C1	2.1289 (11)	C7—C12	1.3883 (17)
I1—C7	2.1370 (12)	C8—C9	1.3954 (19)
I1—O2	2.5674 (10)	C8—H8	0.9500
I1—04	2.7076 (10)	C9—C10	1.387 (2)

11 02	0 0110 (10)	C0 110	0.0500
	2.8118 (10)	С9—Н9	0.9500
S105	1.4555 (10)	C10—C11	1.390 (2)
SI-06	1.4568 (10)		0.9500
S1—04	1.4631 (10)	C11—C12	1.3975 (18)
S1—C13	1.7702 (12)	С11—Н11	0.9500
O2—H2A	0.86 (2)	С12—Н12	0.9500
O2—H2B	0.85 (2)	C13—C18	1.3931 (17)
O3—H3A	0.84 (2)	C13—C14	1.3935 (17)
O3—H3B	0.79 (2)	C14—C15	1.3919 (18)
C1—C6	1.3819 (17)	C14—H14	0.9500
C1—C2	1.3888 (18)	C15—C16	1.3973 (18)
C2—C3	1.3923 (19)	С15—Н15	0.9500
С2—Н2	0.9500	C16—C17	1,3970 (18)
C3—C4	1 385 (2)	C16-C19	1 5037 (19)
C3—H3	0.9500	C17 - C18	1 3888 (18)
C4-C5	1.385(2)	C17H17	0.9500
C4 H4	0.0500		0.9500
	0.9300		0.9300
C5C6	1.3942 (18)	CIQ_HI9A	0.9800
CS—HS	0.9500	С19—Н19В	0.9800
С6—Н6	0.9500	С19—Н19С	0.9800
01—I1—C1	94 57 (4)	С1—С6—Н6	121.3
01 - 11 - 07	96.08 (5)	C5-C6-H6	121.3
$C_1 U_1 C_7$	95.36(4)	C_{2}^{8} C_{2}^{7} C_{12}^{12}	121.3 123 12 (12)
$C_1 = 11 = C_1$	35.50(4)	$C_{8} = C_{7} = C_{12}$	123.12(12)
01 - 11 - 02	1/5.2/(4)		114.46 (9)
CI = II = 02	81.83 (4)		122.41 (9)
C/—11—02	87.34 (4)	C/C8C9	118.05 (12)
01—11—04	77.55 (4)	С7—С8—Н8	121.0
C1—I1—O4	171.59 (4)	С9—С8—Н8	121.0
C7—I1—O4	82.72 (4)	C10—C9—C8	120.41 (13)
O2—I1—O4	106.19 (3)	С10—С9—Н9	119.8
O1—I1—O3	87.53 (4)	С8—С9—Н9	119.8
C1—I1—O3	84.96 (4)	C9—C10—C11	120.17 (13)
C7—I1—O3	176.33 (4)	С9—С10—Н10	119.9
O2—I1—O3	89.09 (3)	C11—C10—H10	119.9
O4—I1—O3	97.47 (3)	C10—C11—C12	120.71 (13)
Q5—S1—Q6	113.54 (7)	C10—C11—H11	119.6
05-81-04	112.68 (7)	C12—C11—H11	119.6
06-104	111.76 (6)	C7-C12-C11	117.53(12)
05 S1 C13	106.12 (6)	C7 $C12$ $H12$	121.2
05-51-013	106.66 (6)	$C_1 = C_1 $	121.2
00-31-013	100.00(0) 105.27(6)	C18 - C12 - C14	121.2 120.40(11)
	103.37(0)		120.40 (11)
H = 02 - H2A	112.9 (14)		119.17 (9)
II—O2—H2B	125.5 (14)	C14—C13—S1	120.33 (9)
H2A—O2—H2B	110 (2)	C15—C14—C13	119.13 (11)
11—О3—НЗА	124.2 (14)	C15—C14—H14	120.4
I1—O3—H3B	123.4 (15)	C13—C14—H14	120.4
НЗА—ОЗ—НЗВ	101.5 (19)	C14—C15—C16	121.38 (12)

S1—O4—I1	138.26 (6)	C14—C15—H15	119.3
C6—C1—C2	123.26 (11)	C16—C15—H15	119.3
C6—C1—I1	121.86 (9)	C17—C16—C15	118.41 (12)
C2—C1—I1	114.81 (9)	C17—C16—C19	120.65 (12)
C1—C2—C3	117.98 (13)	C15—C16—C19	120.93 (12)
C1—C2—H2	121.0	C18—C17—C16	120.94 (12)
С3—С2—Н2	121.0	С18—С17—Н17	119.5
C4—C3—C2	120.03 (13)	С16—С17—Н17	119.5
С4—С3—Н3	120.0	C17—C18—C13	119.73 (12)
С2—С3—Н3	120.0	C17—C18—H18	120.1
C5—C4—C3	120.63 (12)	C13—C18—H18	120.1
C5—C4—H4	119.7	С16—С19—Н19А	109.5
C3—C4—H4	119.7	C16—C19—H19B	109.5
C4—C5—C6	120.63 (13)	H19A—C19—H19B	109.5
C4—C5—H5	119.7	C16—C19—H19C	109.5
С6—С5—Н5	119.7	H19A—C19—H19C	109.5
C1—C6—C5	117.46 (12)	H19B—C19—H19C	109.5
O5—S1—O4—I1	5.82 (11)	C10-C11-C12-C7	-0.16 (19)
O6—S1—O4—I1	135.08 (8)	O5—S1—C13—C18	-36.61 (12)
C13—S1—O4—I1	-109.46 (9)	O6—S1—C13—C18	-157.97 (10)
C6—C1—C2—C3	0.8 (2)	O4—S1—C13—C18	83.11 (11)
I1—C1—C2—C3	177.82 (11)	O5—S1—C13—C14	147.06 (11)
C1—C2—C3—C4	-0.7 (2)	O6—S1—C13—C14	25.70 (12)
C2—C3—C4—C5	0.3 (2)	O4—S1—C13—C14	-93.22 (11)
C3—C4—C5—C6	-0.1 (2)	C18—C13—C14—C15	-0.18 (19)
C2-C1-C6-C5	-0.6 (2)	S1—C13—C14—C15	176.11 (10)
I1—C1—C6—C5	-177.39 (10)	C13—C14—C15—C16	-0.6 (2)
C4—C5—C6—C1	0.2 (2)	C14-C15-C16-C17	1.0 (2)
C12—C7—C8—C9	-0.70 (19)	C14—C15—C16—C19	-177.83 (13)
I1—C7—C8—C9	-179.34 (10)	C15-C16-C17-C18	-0.7 (2)
C7—C8—C9—C10	0.4 (2)	C19—C16—C17—C18	178.17 (13)
C8—C9—C10—C11	-0.1 (2)	C16—C17—C18—C13	-0.1 (2)
C9—C10—C11—C12	-0.1 (2)	C14—C13—C18—C17	0.51 (19)
C8—C7—C12—C11	0.56 (19)	S1—C13—C18—C17	-175.82 (10)
I1—C7—C12—C11	179.10 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2A···O3 ⁱ	0.86 (2)	1.92 (2)	2.7563 (14)	165 (2)
O2—H2 <i>B</i> …I1 ⁱⁱ	0.85 (2)	3.14 (2)	3.9397 (10)	158.1 (18)
O2—H2 <i>B</i> ⋯O1 ⁱⁱ	0.85 (2)	1.91 (2)	2.7443 (14)	169 (2)
O3—H3A····S1 ⁱ	0.84 (2)	3.00(2)	3.7847 (11)	155.7 (17)
O3—H3 <i>A</i> ···O5 ⁱ	0.84 (2)	1.92 (2)	2.7625 (15)	174.6 (19)
O3—H3 <i>B</i> ···S1 ⁱⁱⁱ	0.79 (2)	2.89 (2)	3.5812 (10)	147.5 (18)
O3—H3 <i>B</i> ···O6 ⁱⁱⁱ	0.79 (2)	1.99 (2)	2.7776 (14)	171 (2)
C2—H2…O1	0.95	2.49	2.9805 (16)	112

data reports

С6—Н6…О2	0.95	2.33	2.9408 (17)	122
C6—H6···O6 ⁱ	0.95	2.58	3.2562 (16)	129
С8—Н8…О1	0.95	2.38	2.9521 (17)	119
C12—H12···O2	0.95	2.41	3.0957 (17)	129
C14—H14…O5 ^{iv}	0.95	2.65	3.4301 (16)	139

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*.