ISSN 2414-3146

Received 12 January 2022 Accepted 28 May 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: aniline; crystal structure; N—H···N hydrogen bonds.

CCDC reference: 2175519

Structural data: full structural data are available from iucrdata.iucr.org

2,6-Dibromo-4-methylaniline

Ouarda Brihi,^a* Meriem Medjani,^b Hassiba Bougueria,^c Amel Djedouani,^d Michelle Francois,^e Solenne Fleutot^e and Ali Boudjada^a

^aLaboratoire de Cristallographie, Département de Physique, Université Frères Mentouri-Constantine 1, 25000 Constantine, Algeria, ^bLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine 1, 25000 Constantine, Algeria, ^cUnité de Recherche de Chimie de l'envirenement et Moléculaire Structurale (CHEMS), Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, ^dLaboratoire de Physicochimie Analytique et de Cristallochimie de Matériaux Organo-métalique et Biomoléculaire, 25000 Constantine, Algeria, and ^eInstitut Jean Lamour UMR, 7198 Parc de Saurup CS 14234, F 54042 Nancy, France. *Correspondence e-mail: ouardabrihi@yahoo.fr

In the title compound, $C_7H_7Br_2N$, the C-C-C bond angles of the benzene ring are notably distorted and two short intamolecular N-H···Br contacts occur. In the crystal, the molecules are linked by N-H···N hydrogen bonds to generate C(2) chains propagating in the [100] direction.

Structure description

The solid-state structure of the title compound, $C_7H_7Br_2N$, was established by singlecrystal X-ray diffraction analysis at 200 K and the molecular structure is illustrated in Fig. 1. The bromine atoms are slightly displaced from the mean plane of C1–C4/C6/C7 benzene ring, by 0.032 (1) and 0.065 (1) Å for Br1 and Br2, respectively. This can also be quantified by the C4–C3–C2–Br1 and C4–C6–C7–Br2 torsion angles, which are 179.7 (3) and –178.5 (3)°, respectively. The bond angles in the benzene ring are notably distorted from the ideal value of 120° with C7–C1–C2 = 115.1 (4), C1–C2–C3 = 122.8 (4) and C1–C7–C6 = 123.0 (4)°. The amine group lying between the bromine atoms results in two short intramolecular N–H···Br contacts (Table 1).

In the crystal, the molecules are linked by weak N1-H1B···N1 hydrogen bonds (Table 1) with N···N = 3.120 (7) Å to generate [100] C(2) chains with adjacent molecules related by the 2₁ screw axis. A similar hydrogen bond was observed in diaminomesithylene (Brihi *et al.*, 2016). The packing is illustrated in Fig. 2, which shows the topology of the chain is a zigzag, with an angle of inclination of the benzene ring to the *a* axis of 53.73 (14)°.

Table 1		
Hydrogen-bond	geometry (Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1 - H1A \cdots Br1$	0.86	2.65	3.077 (4)	112
$N1 - H1B \cdots Br2$	0.86	2.64	3.072 (4)	113

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Synthesis and crystallization

The title compound is commercially available (Lancaster Synthesis). It was purified by recrystallization from a solution of 80% ethanol and 20% distilled water. The colorless single crystals obtained are in the form of needles, which grow along the a axis.

Figure 1

The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

Views along the (a) b and (b) c axes of the crystal packing of the title compound with hydrogen bonds shown as dotted lines.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_7H_7Br_2N$
M _r	264.96
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	200
a, b, c (Å)	4.3773 (7), 13.585 (2), 14.057 (3)
$V(Å^3)$	835.9 (2)
Z	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	9.62
Crystal size (mm)	$0.12 \times 0.05 \times 0.04$
Data collection	
Diffractometer	Bruker APEXII QUAZAR CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.396, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7550, 1715, 1422
R _{int}	0.061
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.072, 0.91
No. of reflections	1715
No. of parameters	92
H-atom treatment	H-atom parameters not refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.36, -0.38
Absolute structure	Flack (1983)
Absolute structure parameter	0.02 (2)

Computer programs: *APEX2* and *SAINT* (Bruker, 2016), *SIR92* (Altomare *et al.*, 1994), *SHELXL2013* (Sheldrick, 2015), *ORTEP* for Windows and *WinGX* publication routines (Farrugia, 2012).

Refinement

Crystal data, data collection and structure refinement details of the compound are summarized in Table 2.

Acknowledgements

This work was supported by the Laboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, Algérie and Institut Jean Lamour UMR 7198, Parc de Saurupt, CS 14234 F 54042 Nancy, France.

References

Brihi, O., Hamdouni, N., Boulcina, R., Medjani, M., Meinnel, J. & Boudjada, A. (2016). *IUCrData*, **1**, x160351.

Bruker (2016). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2022). 7, x220577 [https://doi.org/10.1107/S2414314622005776]

2,6-Dibromo-4-methylaniline

Ouarda Brihi, Meriem Medjani, Hassiba Bougueria, Amel Djedouani, Michelle Francois, Solenne Fleutot and Ali Boudjada

2,6-Dibromo-4-methylaniline

Crystal data

C₇H₇Br₂N $M_r = 264.96$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 4.3773 (7) Å b = 13.585 (2) Å c = 14.057 (3) Å V = 835.9 (2) Å³ Z = 4

Data collection

Bruker APEXII QUAZAR CCD diffractometer Radiation source: ImuS Graphite monochromator Detector resolution: 8.02 pixels mm⁻¹ $f \ and \ \omega \ scans$ Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{min} = 0.396, T_{max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.072$ S = 0.911715 reflections 92 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 504 $D_x = 2.105 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7750 reflections $\theta = 2.1-26.4^{\circ}$ $\mu = 9.62 \text{ mm}^{-1}$ T = 200 KNeedle, colorless $0.12 \times 0.05 \times 0.04 \text{ mm}$

7550 measured reflections 1715 independent reflections 1422 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -5 \rightarrow 5$ $k = -15 \rightarrow 16$ $l = -17 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters not refined $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.38$ e Å⁻³ Absolute structure: Flack (1983) Absolute structure parameter: 0.02 (2)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.69454 (12)	0.51851 (3)	0.40790 (4)	0.0449 (2)
Br2	0.49325 (11)	0.11063 (3)	0.35184 (3)	0.0374 (2)
N1	0.4343 (8)	0.3124 (3)	0.4488 (2)	0.0340 (14)
C1	0.6072 (9)	0.3165 (3)	0.3674 (3)	0.0255 (14)
C2	0.7481 (9)	0.4015 (3)	0.3360 (3)	0.0277 (14)
C3	0.9295 (10)	0.4045 (3)	0.2553 (3)	0.0323 (17)
C4	0.9781 (10)	0.3217 (3)	0.2004 (3)	0.0313 (14)
C5	1.1658 (11)	0.3259 (3)	0.1108 (3)	0.0447 (17)
C6	0.8409 (10)	0.2336 (3)	0.2315 (3)	0.0317 (14)
C7	0.6636 (10)	0.2322 (3)	0.3118 (3)	0.0280 (12)
H1	1.33755	0.28238	0.11654	0.0669*
H1A	0.40957	0.36443	0.48284	0.0407*
H1B	0.35064	0.25790	0.46576	0.0407*
H2	1.02080	0.46361	0.23780	0.0388*
H3	0.87095	0.17585	0.19722	0.0378*
H4	1.23699	0.39194	0.10090	0.0669*
Н5	1.04240	0.30603	0.05765	0.0669*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic	displ	lacement	parameters	$(Å^2)$
--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0576 (3)	0.0274 (2)	0.0497 (3)	-0.0005 (2)	0.0057 (3)	-0.0016 (2)
Br2	0.0373 (3)	0.0279 (2)	0.0471 (3)	-0.0053 (2)	-0.0027 (3)	0.0002 (2)
N1	0.038 (3)	0.031 (2)	0.033 (2)	-0.0013 (18)	0.0070 (18)	0.0005 (17)
C1	0.0174 (19)	0.028 (2)	0.031 (3)	0.0015 (17)	-0.0052 (19)	0.007 (2)
C2	0.023 (2)	0.027 (2)	0.033 (3)	0.0023 (18)	-0.0039 (19)	0.0002 (19)
C3	0.027 (3)	0.029 (3)	0.041 (3)	0.0011 (19)	0.001 (2)	0.006 (2)
C4	0.021 (2)	0.041 (3)	0.032 (2)	0.005 (2)	0.000(2)	0.007 (2)
C5	0.036 (3)	0.057 (3)	0.041 (3)	0.009 (3)	0.005 (3)	0.008 (3)
C6	0.030 (2)	0.038 (3)	0.027 (2)	0.004 (2)	-0.004 (2)	-0.002 (2)
C7	0.024 (2)	0.028 (2)	0.032 (2)	0.001 (2)	-0.006 (2)	-0.0010 (19)

Geometric parameters (Å, °)

Br1—C2	1.898 (4)	C4—C5	1.505 (6)
Br2—C7	1.898 (4)	C4—C6	1.409 (6)

data reports

N1—C1 N1—H1A N1—H1B C1—C7 C1—C2 C2—C3 C3—C4	1.373 (5) 0.8600 0.8600 1.408 (6) 1.382 (6) 1.385 (6) 1.381 (6)	C6—C7 C3—H2 C5—H1 C5—H4 C5—H5 C6—H3	1.370 (6) 0.9300 0.9600 0.9600 0.9600 0.9300
$C1-N1-H1B \\H1A-N1-H1B \\C1-N1-H1A \\C2-C1-C7 \\N1-C1-C7 \\N1-C1-C2 \\Br1-C2-C1 \\Br1-C2-C3 \\C1-C2-C3 \\C2-C3-C4 \\C5-C4-C6 \\C3-C4-C5 \\C3-C4-C6 \\C4-C6-C7 \\$	120.00 120.00 120.00 115.1 (4) 121.8 (4) 123.1 (4) 118.3 (3) 118.8 (3) 122.8 (4) 121.5 (4) 121.7 (4) 121.4 (4) 116.9 (4) 120.6 (4)	$\begin{array}{l} Br2-C7-C1\\ Br2-C7-C6\\ C1-C7-C6\\ C2-C3-H2\\ C4-C3-H2\\ C4-C5-H1\\ C4-C5-H4\\ C4-C5-H5\\ H1-C5-H5\\ H1-C5-H5\\ H4-C5-H5\\ H4-C5-H5\\ C4-C6-H3\\ C7-C6-H3\\ C7-C6-H3\\ \end{array}$	118.3 (3) 118.6 (3) 123.0 (4) 119.00 119.00 110.00 109.00 109.00 109.00 109.00 120.00
N1—C1—C2—Br1 N1—C1—C2—C3 C7—C1—C2—Br1 C7—C1—C2—C3 N1—C1—C7—Br2 N1—C1—C7—C6 C2—C1—C7—Br2 C2—C1—C7—C6	-1.0 (5) 178.1 (4) -178.5 (3) 0.6 (6) 0.1 (6) -178.5 (4) 177.6 (3) -1.0 (6)	Br1—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—C6 C3—C4—C6—C7 C5—C4—C6—C7 C4—C6—C7—Br2 C4—C6—C7—C1	179.7 (3) 0.6 (7) 177.7 (4) -1.5 (6) 1.2 (6) -178.1 (4) -178.5 (3) 0.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1A···Br1	0.86	2.65	3.077 (4)	112
N1—H1 <i>B</i> ···Br2	0.86	2.64	3.072 (4)	113
$N1$ — $H1B$ ···· $N1^{i}$	0.86	2.38	3.120 (7)	144

Symmetry code: (i) x-1/2, -y+1/2, -z+1.