

ISSN 2414-3146

Received 6 June 2022 Accepted 13 June 2022

Edited by E. R. T. Tiekink, Sunway University, Malaysia

‡ Additional correspondence author, e-mail: y.ramli@um5r.ac.ma.

Keywords: crystal structure; acetamide; azide; hydrogen bond.

CCDC reference: 2178858

Structural data: full structural data are available from iucrdata.iucr.org

2-Azido-N-(4-methylphenyl)acetamide

Mohcine Missioui,^a Walid Guerrab,^a Abdulsalam Alsubari,^{b*} Joel T. Mague^c and Youssef Ramli^a[‡]

^aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, ^bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

The asymmetric unit of the title compound, $C_9H_{10}N_4O$, comprises three independent molecules, two pairs of which differ significantly in the rotational orientation of the azido group and one pair having very similar conformations; the N-N-C-C torsion angles are -173.9 (2), -102.7 (2) and -173.6 (2)°. In the crystal, each independent molecule forms N-H···O hydrogen bonds with its glide-plane-related counterparts, forming zigzag chains extending along the *c*axis direction.

Structure description

N-arylacetamides are significant intermediates for the synthesis of medicinal, agrochemical and pharmaceutical compounds (Beccalli *et al.*, 2007; Valeur & Bradley, 2009; Allen & Williams, 2011; Missioui *et al.*, 2021, 2022*a,b*). Azides have found valuable applications in medicinal chemistry (Contin *et al.*, 2019), molecular biology (Ahmed & Abdallah, 2019) and attract increasing attention in the field of organic synthesis as intermediates for the preparation of heterocycles such as tetrazoles, triazolines, triazoles, *etc* (Chauhan *et al.*, 2019; Bakulev *et al.*, 2019; Abad *et al.*, 2020; Missioui, Lgaz *et al.*, 2022). Based on the aforementioned information and in continuation of our research efforts to synthesize more *N*-arylacetamides (Missioui *et al.*, 2020; Missioui, Guerrab, Nchioua *et al.*, 2022; Guerrab *et al.*, 2021), we report the synthesis and crystal structure of the title compound. The structure of the closely related compound 2-azido-*N*-(4-fluorophenyl)acetamide is reported by Missioui, Guerrab, Alsubari *et al.* (2022).

The asymmetric unit comprises three independent molecules with the azide moieties oriented in opposite directions between molecules containing O1 and O2 but with the same situation in the molecules containing O2 and O3 (Table 1). On the other hand, the

data reports

	C0 C0	172.0 (2)	N14.4
Selected to	orsion ang	gles (°).	
Table 1			

N3-N2-C9-C8	-173.9(2)	N11-N10-C27-C26	-173.6 (2
N7-N6-C18-C17	-102.7 (2)		

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO1^{i}$	0.86 (3)	2.04 (3)	2.867 (2)	162 (2)
$N5-H5A\cdots O2^{i}$	0.85 (3)	2.01 (3)	2.833 (2)	163 (2)
C15-H15···O2	0.91 (3)	2.34(2)	2.905 (3)	120 (2)
$C18-H18B\cdots O2^{i}$	0.99 (3)	2.57 (3)	3.353 (3)	136 (2)
N9−H9C···O3 ⁱ	0.81 (3)	2.05 (3)	2.835 (2)	163 (2)
C24-H24···O3	0.91 (3)	2.27 (3)	2.882 (3)	125 (2)

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

molecules containing O1 and O3 have very similar conformations. The rotational orientations of the phenyl groups with respect to the carboxamide moieties are partially determined by intramolecular $C-H\cdots O$ hydrogen bonds (Fig. 1 and Table 2).

In the crystal, each component of the asymmetric unit forms a chain with its counterparts related by the glide plane and extending along the *c*-axis direction through N1–H1A···O1 or N5–H5A···O2 or N9–H9C···O3 hydrogen bonds (Table 2). In the case of the molecule containing O2, the chain is reinforced by C18–H18B···O2 hydrogen bonds (Table 2 and Figs. 2 and 3). The chains pack through normal van der Waals contacts.

Synthesis and crystallization

2-Chloro-N-(p-tolyl)acetamide (0.011 mol) and sodium azide (0.015 mol) were dissolved in a mixture of ethanol/water (70:30) then refluxed for 24 h at 80°C. After completion of the reaction (monitored by thin-layer chromatography, TLC), the 2-azido-N-(4-methylphenyl)acetamide precipitate was filtered

Figure 1

The asymmetric unit with the labelling scheme and 50% probability ellipsoids. The intramolecular $C-H\cdots O$ hydrogen bonds are shown as dashed lines.

Packing viewed along the *c*-axis direction with $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds indicated, respectively, by blue and black dashed lines.

and washed with cold water. A portion of the product was dissolved in hot ethanol, the solution was filtered and the filtrate was left undisturbed for 7 days to form colourless plate-like crystals.

Yield 73%, mp 360–362 K, FT–IR (ATR, ν , cm⁻¹) 3254 ν (N–H amide), 3073 ν (C–H_{arom}), 2961 ν (C–H,CH₂), 2109 ν (N₃), 1027 ν (N–C amide), 1660 ν (C=O amide), 1175 ν (C– N). ¹H NMR (DMSO– d_6) δ p.p.m. 4.02 (2H, s, CH₂), 4.21 (3H, s, CH₃), 6.93–7.1 (4H, m, J = 1.3 Hz, H_{arom}), 10.05 (1H, s, NH), ¹³C NMR (DMSO– d_6) δ p.p.m. 51.18 (CH₂), 63.85 (CH₃), 131.47 (C_{arom}–N), 155.47 (C_{arom}–O), 113.90–120.86 (C_{arom});

Packing viewed along the *a*-axis direction with $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds indicated, respectively, by blue and black dashed lines.

Table 3Experimental details.

$C_9H_{10}N_4O$
190.21
Monoclinic, $P2_1/c$
150
14.4362 (4), 21.3403 (6), 9.2949 (3)
98.356 (1)
2833.11 (14)
12
Cu Ka
0.77
$0.22 \times 0.16 \times 0.08$
Bruker D8 VENTURE PHOTON
100 CMOS
Multi-scan (SADABS; Krause et al., 2015)
0.86, 0.94
21650, 5486, 4161
0.039
0.617
0.059, 0.178, 1.05
5486
466
H atoms treated by a mixture of
independent and constrained refinement
0.44, -0.39

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL 2018/1 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

165.71 (C=O); HRMS (ESI MS) (m/z) calculated for C₉H₁₀N₄O 190.21 found 190.1191.

Refinement

Crystal data, data collection and structure and refinement details are summarized in Table 3.

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. Author contributions are as follows: Conceptualization, YR; methodology, AA and MM; investigation, WG, MM; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

References

- Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Elmgirhi, S. M. H., Habib, M. A., Guerfel, T., Mague, J. T. & Essassi, E. M. (2020). J. Phys. Org. Chem. 33, 4055.
- Ahmed, S. & Abdallah, N. A. (2019). J. Pharm. Biomed. Anal. 165, 357–365.
- Allen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405–3415.
- Bakulev, V., Shafran, Y. & Dehaen, W. (2019). *Tetrahedron Lett.* **60**, 513–523.
- Beccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). *Chem. Rev.* **107**, 5318–5365.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
- Chauhan, U. B., Tomich, A. W. & Lavallo, V. (2019). *Tetrahedron*, **75**, 1323–1325.
- Contin, M., Sepúlveda, C., Fascio, M., Stortz, C. A., Damonte, E. B. & D'Accorso, N. B. (2019). *Bioorg. Med. Chem. Lett.* 29, 556–559.
- Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Missioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 855–859.
- Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. *Kristallogr. New Cryst. Struct.* **235**, 1429–1430.
- Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687–690.
- Missioui, M., Lgaz, H., Guerrab, W., Lee, H.-G., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022). *J. Mol. Struct.* **1253**, 132132.
- Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.
- Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab J. Chem. 15, 103595.
- Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. **1247**, 131420.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.

full crystallographic data

IUCrData (2022). 7, x220621 [https://doi.org/10.1107/S2414314622006216]

2-Azido-N-(4-methylphenyl)acetamide

Mohcine Missioui, Walid Guerrab, Abdulsalam Alsubari, Joel T. Mague and Youssef Ramli

F(000) = 1200

 $\theta = 3.7 - 72.2^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$

Plate, colourless

 $0.22 \times 0.16 \times 0.08 \text{ mm}$

 $T_{\rm min} = 0.86, T_{\rm max} = 0.94$

 $\theta_{\text{max}} = 72.2^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$

21650 measured reflections

5486 independent reflections

4161 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.039$

 $h = -17 \rightarrow 17$

 $k = -26 \rightarrow 24$ $l = -10 \rightarrow 11$

 $D_{\rm x} = 1.338 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 9919 reflections

2-Azido-N-(4-methylphenyl)acetamide

Crystal data

C₉H₁₀N₄O $M_r = 190.21$ Monoclinic, $P2_1/c$ a = 14.4362 (4) Å b = 21.3403 (6) Å c = 9.2949 (3) Å $\beta = 98.356$ (1)° V = 2833.11 (14) Å³ Z = 12

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: mixed
$wR(F^2) = 0.178$	H atoms treated by a mixture of independent
S = 1.05	and constrained refinement
5486 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0988P)^2 + 1.2801P]$
466 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.44 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group hydrogen atoms were included as riding contributions in idealized positions since independent refinement yielded unsatisfactory geometries.

The H atoms were treated by a mixture of independent and constrained refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.94983 (12)	0.27610 (7)	0.28617 (15)	0.0374 (4)
N1	0.94218 (12)	0.29612 (8)	0.04434 (18)	0.0288 (4)
H1A	0.9534 (17)	0.2808 (11)	-0.037 (3)	0.036 (6)*
N2	1.06934 (16)	0.17717 (11)	0.2860 (2)	0.0456 (5)
N3	1.12261 (17)	0.14178 (11)	0.2867 (2)	0.0462 (5)
N4	1.18070 (17)	0.10247 (12)	0.3057 (3)	0.0584 (6)
C1	0.87815 (13)	0.34695 (9)	0.0273 (2)	0.0271 (4)
C2	0.82911 (16)	0.35703 (10)	-0.1109 (2)	0.0342 (5)
H2	0.8403 (17)	0.3316 (11)	-0.190 (3)	0.036 (6)*
C3	0.76610 (16)	0.40609 (11)	-0.1351 (3)	0.0395 (5)
Н3	0.7357 (18)	0.4126 (12)	-0.230 (3)	0.044 (7)*
C4	0.75000 (15)	0.44650 (10)	-0.0236 (3)	0.0361 (5)
C5	0.80085 (16)	0.43586 (10)	0.1134 (3)	0.0358 (5)
Н5	0.7923 (17)	0.4632 (12)	0.195 (3)	0.040 (7)*
C6	0.86475 (16)	0.38713 (10)	0.1402 (2)	0.0324 (5)
H6	0.8968 (18)	0.3818 (12)	0.240 (3)	0.051 (8)*
C7	0.68108 (17)	0.49939 (12)	-0.0490 (3)	0.0491 (6)
H7A	0.684547	0.518373	-0.144064	0.074*
H7B	0.695979	0.531009	0.027316	0.074*
H7C	0.617706	0.483320	-0.046823	0.074*
C8	0.97286 (14)	0.26489 (9)	0.1665 (2)	0.0278 (4)
C9	1.04041 (16)	0.21228 (10)	0.1437 (2)	0.0328 (5)
H9A	1.094 (2)	0.2312 (13)	0.113 (3)	0.051 (8)*
H9B	1.0123 (18)	0.1829 (13)	0.072 (3)	0.046 (7)*
O2	0.59911 (11)	0.27335 (7)	0.86318 (15)	0.0342 (4)
N5	0.58708 (12)	0.29502 (8)	0.62103 (18)	0.0267 (4)
H5A	0.5974 (17)	0.2809 (11)	0.539 (3)	0.036 (6)*
N6	0.68901 (13)	0.16221 (9)	0.8282 (2)	0.0382 (4)
N7	0.75608 (14)	0.16342 (10)	0.9230 (2)	0.0404 (5)
N8	0.81422 (19)	0.15780 (17)	1.0172 (3)	0.0832 (10)
C10	0.52692 (14)	0.34800 (9)	0.6098 (2)	0.0256 (4)
C11	0.47922 (14)	0.36246 (9)	0.4726 (2)	0.0284 (4)
H11	0.4846 (15)	0.3348 (10)	0.395 (3)	0.029 (6)*
C12	0.42233 (15)	0.41482 (10)	0.4533 (2)	0.0333 (5)
H12	0.3878 (18)	0.4254 (12)	0.350 (3)	0.044 (7)*
C13	0.41091 (14)	0.45438 (9)	0.5689 (2)	0.0330 (5)
C14	0.45925 (16)	0.43892 (10)	0.7051 (3)	0.0362 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	0.451 (2)	0.4667 (14)	0.782 (3)	0.063 (9)*
C15	0.51679 (15)	0.38677 (10)	0.7267 (2)	0.0320 (5)
H15	0.5482 (16)	0.3763 (11)	0.815 (3)	0.036 (6)*
C16	0.35033 (16)	0.51175 (11)	0.5467 (3)	0.0451 (6)
H16A	0.371814	0.538444	0.472383	0.068*
H16B	0.354393	0.534995	0.638346	0.068*
H16C	0.285253	0.499254	0.514934	0.068*
C17	0.61908 (14)	0.26242 (9)	0.7411 (2)	0.0262 (4)
C18	0.68726 (16)	0.21025 (10)	0.7153 (2)	0.0318 (5)
H18A	0.7514 (19)	0.2291 (12)	0.716 (3)	0.043 (7)*
H18B	0.666 (2)	0.1898 (13)	0.621 (3)	0.056 (8)*
O3	0.27488 (11)	0.27395 (7)	0.57857 (15)	0.0359 (4)
N9	0.26399 (12)	0.29490 (8)	0.33643 (18)	0.0276 (4)
H9C	0.2770 (17)	0.2798 (11)	0.262 (3)	0.034 (6)*
N10	0.39415 (17)	0.17693 (11)	0.5742 (2)	0.0497 (6)
N11	0.45011 (15)	0.13998 (10)	0.5754 (2)	0.0418 (5)
N12	0.50716 (17)	0.10135 (11)	0.5955 (2)	0.0545 (6)
C19	0.20449 (14)	0.34791 (9)	0.3227 (2)	0.0272 (4)
C20	0.16642 (16)	0.36623 (11)	0.1823 (2)	0.0370 (5)
H20	0.1734 (19)	0.3414 (13)	0.104 (3)	0.049 (7)*
C21	0.11114 (17)	0.41922 (12)	0.1608 (3)	0.0430 (5)
H21	0.0838 (19)	0.4294 (13)	0.063 (3)	0.053 (8)*
C22	0.09127 (15)	0.45572 (10)	0.2763 (3)	0.0381 (5)
C23	0.12924 (16)	0.43601 (11)	0.4155 (3)	0.0395 (5)
H23	0.118 (2)	0.4638 (13)	0.502 (3)	0.055 (8)*
C24	0.18568 (16)	0.38350 (11)	0.4397 (2)	0.0351 (5)
H24	0.2128 (19)	0.3704 (13)	0.529 (3)	0.050 (8)*
C25	0.03161 (18)	0.51349 (12)	0.2526 (3)	0.0531 (7)
H25A	0.044391	0.534972	0.164345	0.080*
H25B	0.046129	0.541573	0.336221	0.080*
H25C	-0.034625	0.501632	0.241599	0.080*
C26	0.29622 (14)	0.26290 (9)	0.4575 (2)	0.0270 (4)
C27	0.36337 (16)	0.21023 (10)	0.4325 (2)	0.0316 (5)
H27A	0.4158 (18)	0.2284 (11)	0.399 (3)	0.037 (6)*
H27B	0.333 (2)	0.1813 (13)	0.366 (3)	0.053 (8)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0544 (10)	0.0360 (8)	0.0244 (7)	0.0067 (7)	0.0146 (7)	0.0036 (6)
N1	0.0348 (9)	0.0308 (9)	0.0221 (8)	0.0018 (7)	0.0092 (7)	-0.0002 (6)
N2	0.0641 (14)	0.0517 (12)	0.0258 (10)	0.0102 (11)	0.0228 (9)	0.0092 (8)
N3	0.0592 (14)	0.0516 (13)	0.0277 (10)	-0.0166 (12)	0.0066 (9)	0.0056 (9)
N4	0.0638 (15)	0.0573 (14)	0.0541 (14)	0.0200 (12)	0.0080 (11)	0.0149 (11)
C1	0.0274 (9)	0.0265 (10)	0.0287 (10)	-0.0027 (8)	0.0083 (8)	0.0028 (7)
C2	0.0373 (11)	0.0365 (11)	0.0288 (11)	-0.0003 (9)	0.0050 (9)	-0.0025 (9)
C3	0.0377 (12)	0.0432 (13)	0.0359 (13)	0.0038 (10)	-0.0009 (10)	0.0036 (9)
C4	0.0290 (10)	0.0327 (11)	0.0466 (13)	-0.0024 (9)	0.0058 (9)	0.0012 (9)

C5	0.0375 (11)	0.0316 (11)	0.0397 (12)	-0.0028 (9)	0.0107 (9)	-0.0030 (9)
C6	0.0383 (11)	0.0300 (10)	0.0298 (11)	-0.0016 (9)	0.0078 (9)	-0.0001 (8)
C7	0.0408 (13)	0.0408 (13)	0.0640 (17)	0.0075 (11)	0.0014 (12)	0.0005 (11)
C8	0.0334 (10)	0.0275 (9)	0.0230 (10)	-0.0058 (8)	0.0056 (8)	0.0012 (7)
C9	0.0382 (12)	0.0355 (11)	0.0256 (10)	0.0047 (9)	0.0074 (9)	0.0036 (8)
O2	0.0474 (9)	0.0323 (8)	0.0246 (7)	0.0015 (6)	0.0107 (6)	0.0040 (6)
N5	0.0342 (9)	0.0254 (8)	0.0218 (8)	0.0029 (7)	0.0089 (7)	0.0001 (6)
N6	0.0411 (10)	0.0329 (10)	0.0402 (10)	0.0004 (8)	0.0046 (9)	0.0099 (8)
N7	0.0440 (11)	0.0531 (12)	0.0256 (10)	-0.0055 (9)	0.0095 (9)	0.0069 (8)
N8	0.0636 (16)	0.136 (3)	0.0447 (15)	-0.0191 (17)	-0.0087 (13)	0.0369 (16)
C10	0.0290 (9)	0.0224 (9)	0.0272 (10)	-0.0019 (7)	0.0097 (8)	0.0010 (7)
C11	0.0316 (10)	0.0279 (10)	0.0261 (10)	-0.0016 (8)	0.0057 (8)	-0.0003 (8)
C12	0.0299 (10)	0.0327 (11)	0.0372 (12)	-0.0009 (9)	0.0039 (9)	0.0051 (9)
C13	0.0290 (10)	0.0246 (10)	0.0468 (12)	-0.0013 (8)	0.0105 (9)	0.0008 (8)
C14	0.0387 (12)	0.0312 (11)	0.0405 (12)	0.0005 (9)	0.0118 (10)	-0.0071 (9)
C15	0.0370 (11)	0.0303 (11)	0.0298 (11)	0.0004 (9)	0.0085 (9)	-0.0029 (8)
C16	0.0371 (12)	0.0292 (11)	0.0695 (17)	0.0033 (10)	0.0090 (11)	-0.0001 (11)
C17	0.0314 (10)	0.0237 (9)	0.0248 (9)	-0.0043 (8)	0.0085 (8)	0.0003 (7)
C18	0.0357 (11)	0.0294 (10)	0.0320 (11)	0.0052 (9)	0.0100 (9)	0.0060 (8)
03	0.0493 (9)	0.0376 (8)	0.0231 (7)	0.0027 (7)	0.0130 (6)	0.0032 (6)
N9	0.0322 (9)	0.0312 (9)	0.0208 (8)	-0.0001 (7)	0.0083 (7)	-0.0015 (7)
N10	0.0677 (14)	0.0583 (13)	0.0273 (10)	0.0166 (12)	0.0217 (10)	0.0144 (9)
N11	0.0510 (12)	0.0495 (12)	0.0256 (9)	-0.0109 (11)	0.0077 (8)	0.0030 (8)
N12	0.0575 (14)	0.0592 (14)	0.0462 (13)	0.0170 (12)	0.0062 (10)	0.0083 (10)
C19	0.0267 (9)	0.0277 (10)	0.0280 (10)	-0.0053 (8)	0.0065 (8)	0.0006 (7)
C20	0.0426 (12)	0.0409 (12)	0.0285 (11)	0.0046 (10)	0.0081 (9)	0.0007 (9)
C21	0.0431 (13)	0.0475 (14)	0.0381 (13)	0.0075 (11)	0.0045 (10)	0.0076 (10)
C22	0.0284 (10)	0.0334 (11)	0.0531 (14)	-0.0032 (9)	0.0080 (10)	0.0006 (10)
C23	0.0355 (11)	0.0385 (12)	0.0456 (13)	-0.0005 (10)	0.0092 (10)	-0.0086 (10)
C24	0.0375 (11)	0.0390 (12)	0.0292 (11)	0.0012 (9)	0.0060 (9)	-0.0048 (9)
C25	0.0414 (13)	0.0407 (14)	0.077 (2)	0.0072 (11)	0.0082 (13)	0.0038 (12)
C26	0.0305 (10)	0.0269 (9)	0.0245 (9)	-0.0066 (8)	0.0066 (8)	0.0006 (7)
C27	0.0383 (11)	0.0311 (11)	0.0260 (10)	0.0001 (9)	0.0071 (9)	0.0022 (8)

Geometric parameters (Å, °)

01	1.230 (2)	C12—H12	1.04 (3)	
N1—C8	1.335 (3)	C13—C14	1.393 (3)	
N1-C1	1.419 (3)	C13—C16	1.501 (3)	
N1—H1A	0.86 (3)	C14—C15	1.386 (3)	
N2—N3	1.077 (3)	C14—H14	0.95 (3)	
N2—C9	1.525 (3)	C15—H15	0.91 (3)	
N3—N4	1.181 (3)	C16—H16A	0.9800	
C1—C6	1.390 (3)	C16—H16B	0.9800	
C1—C2	1.390 (3)	C16—H16C	0.9800	
С2—С3	1.384 (3)	C17—C18	1.528 (3)	
С2—Н2	0.95 (2)	C18—H18A	1.01 (3)	
C3—C4	1.394 (3)	C18—H18B	0.99 (3)	

С3—Н3	0.94 (3)	O3—C26	1.232 (2)
C4—C5	1.393 (3)	N9—C26	1.341 (3)
C4—C7	1.500 (3)	N9—C19	1.415 (3)
C5—C6	1.388 (3)	N9—H9C	0.81 (3)
С5—Н5	0.98 (3)	N10—N11	1.128 (3)
С6—Н6	0.98 (3)	N10-C27	1.505 (3)
С7—Н7А	0.9800	N11—N12	1.161 (3)
С7—Н7В	0.9800	C19—C24	1.386 (3)
С7—Н7С	0.9800	C19—C20	1.396 (3)
C8—C9	1.522 (3)	C20—C21	1.382 (3)
С9—Н9А	0.96 (3)	C20—H20	0.92 (3)
С9—Н9В	0.96 (3)	C21—C22	1.390 (3)
O2—C17	1.233 (2)	C21—H21	0.96 (3)
N5—C17	1.339 (3)	C22—C23	1.394 (4)
N5—C10	1.420 (2)	C22—C25	1.502 (3)
N5—H5A	0.85 (3)	C23—C24	1.384 (3)
N6—N7	1.211 (3)	C23—H23	1.03 (3)
N6—C18	1.465 (3)	C24—H24	0.91 (3)
N7—N8	1.128 (3)	C25—H25A	0.9800
C10—C15	1.390 (3)	C25—H25B	0.9800
C10—C11	1.393 (3)	C25—H25C	0.9800
C11—C12	1.383 (3)	C26—C27	1.524 (3)
C11—H11	0.95 (2)	C27—H27A	0.94 (3)
C12—C13	1.395 (3)	C27—H27B	0.93 (3)
C8—N1—C1	127.34 (17)	C13—C14—H14	115.7 (19)
C8—N1—H1A	118.5 (16)	C14—C15—C10	119.6 (2)
C1—N1—H1A	113.2 (16)	C14—C15—H15	122.6 (16)
N3—N2—C9	117.05 (19)	C10—C15—H15	117.7 (16)
N2—N3—N4	171.7 (3)	C13—C16—H16A	109.5
C6—C1—C2	119.58 (19)	C13—C16—H16B	109.5
C6—C1—N1	123.19 (18)	H16A—C16—H16B	109.5
C2-C1-N1	117.21 (18)	C13—C16—H16C	109.5
C_{3} C_{2} C_{1}	120.1 (2)	H16A—C16—H16C	109.5
C3—C2—H2	119.1 (15)	H16B—C16—H16C	109.5
C1 - C2 - H2	120.7 (15)	02-C17-N5	124 77 (18)
$C^2 - C^3 - C^4$	120.7(13) 121.6(2)	02 - C17 - C18	121.65 (18)
$C_2 = C_3 = H_3$	121.0(2) 1181(16)	N5-C17-C18	113 54 (16)
C4 - C3 - H3	120.3 (16)	N6-C18-C17	109.98 (17)
$C_{5} - C_{4} - C_{3}$	120.3(10) 117.2(2)	N6 - C18 - H18A	109.90(17) 110.7(15)
$C_{5} - C_{4} - C_{7}$	117.2(2) 1210(2)	C17 - C18 - H18A	108.6(15)
$C_{3} - C_{4} - C_{7}$	121.0(2) 121.8(2)	N6-C18-H18B	100.0(13) 107.3(17)
$C_{5} = C_{7} = C_{7}$	121.0(2) 122.3(2)	C17-C18-H18B	109.6 (16)
Сб-С5-Н5	122.3(2) 1176(15)	H18A - C18 - H18B	111 (7)
C4_C5_H5	120.1(15)	$C_{26} N_{0} C_{10}$	111 (2)
C_{-}	120.1(13) 110 3 (2)	$C_{20} = N_{20} = C_{12}$	127.90(17) 114.8(17)
C5 C6 U6	117.3(2) 117.8(16)	C10 N0 H0C	117.0(17)
C_{1} C_{6} H_{6}	117.0(10) 122.0(16)	$\begin{array}{c} 0.17 \\ 1.17 \\ 1.10 \\ 1.10 \\ 0.27 \\ 1.10 \\ 1.$	117.0(17) 117.22(10)
U1-U0-110	122.7(10)	INTI-INTO-C2/	11/.32(19)

С4—С7—Н7А	109.5	N10-N11-N12	171.3 (2)
C4—C7—H7B	109.5	C24—C19—C20	119.0 (2)
H7A—C7—H7B	109.5	C24—C19—N9	123.58 (19)
C4—C7—H7C	109.5	C20—C19—N9	117.38 (18)
H7A—C7—H7C	109.5	C21—C20—C19	120.4 (2)
H7B—C7—H7C	109.5	C21—C20—H20	118.9 (17)
01—C8—N1	124.90 (19)	C19—C20—H20	120.5 (17)
01	122.14 (18)	C20—C21—C22	121.8 (2)
N1—C8—C9	112.96 (17)	C20—C21—H21	118.0(17)
C8-C9-N2	110.01(17)	$C_{22} = C_{21} = H_{21}$	120.2(17)
C8—C9—H9A	107.2(17)	$C_{21} - C_{22} - C_{23}$	1168(2)
N2_C9_H9A	107.2(17) 109.4(16)	$C_{21} = C_{22} = C_{25}$	121.7(2)
$C_8 = C_9 = H_9R$	111 3 (16)	C_{23}^{23} C_{22}^{22} C_{25}^{25}	121.7(2) 121.6(2)
N2 C0 H0B	111.3(10) 108.4(16)	$C_{23} = C_{22} = C_{23}$	121.0(2) 122.5(2)
	100.4(10)	$C_{24} = C_{23} = C_{22}$	122.3(2)
H9A - C9 - H9B	110(2) 127.42(17)	$C_{24} = C_{23} = H_{23}$	119.0(10)
C17 = N5 = U5A	127.42(17)	С22—С23—Н23	117.8 (10)
C17 - N5 - H5A	118.5 (16)	$C_{23} = C_{24} = C_{19}$	119.6 (2)
C10—N5—H5A	113.6 (16)	C23—C24—H24	124.4 (18)
N/—N6—C18	115.80 (19)	C19—C24—H24	116.0 (18)
N8—N7—N6	171.4 (3)	С22—С25—Н25А	109.5
C15—C10—C11	119.29 (19)	C22—C25—H25B	109.5
C15—C10—N5	123.33 (18)	H25A—C25—H25B	109.5
C11—C10—N5	117.33 (17)	С22—С25—Н25С	109.5
C12—C11—C10	120.22 (19)	H25A—C25—H25C	109.5
C12—C11—H11	121.2 (14)	H25B—C25—H25C	109.5
C10-C11-H11	118.5 (14)	O3—C26—N9	124.54 (19)
C11—C12—C13	121.6 (2)	O3—C26—C27	121.98 (18)
C11—C12—H12	119.5 (14)	N9—C26—C27	113.48 (17)
C13—C12—H12	118.9 (14)	N10-C27-C26	109.16 (17)
C14—C13—C12	117.18 (19)	N10-C27-H27A	109.5 (15)
C14—C13—C16	121.5 (2)	С26—С27—Н27А	107.8 (15)
C12—C13—C16	121.3 (2)	N10-C27-H27B	108.3 (18)
C15—C14—C13	122.1 (2)	С26—С27—Н27В	109.8 (17)
C15—C14—H14	122.1 (19)	H27A—C27—H27B	112 (2)
			(-)
C8 - N1 - C1 - C6	25.6 (3)	C13—C14—C15—C10	-0.4(3)
C8-N1-C1-C2	-1562(2)	$C_{11} - C_{10} - C_{15} - C_{14}$	0.1(3)
C6-C1-C2-C3	-1.2(3)	N_{5} C_{10} C_{15} C_{14}	17755(19)
$N_1 - C_1 - C_2 - C_3$	-17952(19)	C10 - N5 - C17 - O2	177.33(17)
C1 - C2 - C3 - C4	0.1(3)	C10 - N5 - C17 - C18	-176.63(18)
$C_1 = C_2 = C_3 = C_4$	0.1(3)	N7 N6 C18 C17	-102.7(2)
$C_2 = C_3 = C_4 = C_5$	-170 A (2)	11/-110-(10-(1)/)	102.7(2)
$C_2 = C_3 = C_4 = C_7$	-0.4(3)	$V_2 - V_1 - V_1 O - 100$	23.1(3) -156.85(19)
$C_{3} - C_{4} - C_{5} - C_{6}$	170.7(3)	113 - C17 - C10 - 110 C26 N0 C10 C24	130.03(10) 14.4(3)
$C_{1} = C_{4} = C_{5} = C_{6} = C_{1}$	1/7.7(2)	$C_{20} = N_{9} = C_{19} = C_{24}$	14.4(3)
$\begin{array}{cccc} C4 \\ \hline C2 \\ \hline C1 \\ \hline C6 \\ \hline C5 \hline \hline$	-0.7(3)	$C_{20} = N_{9} = C_{19} = C_{20}$	-108.4(2)
$\begin{array}{c} c_2 - c_1 - c_0 - c_3 \\ \end{array}$	1.3 (3)	124 - 19 - 120 - 121	0.2 (3)
	1/9./1 (19)	N9-C19-C20-C21	-1//.1(2)
CI—NI—C8—O1	-0.4 (3)	C19—C20—C21—C22	-0.2 (4)

C1 N1 $C8$ $C0$	170 10 (18)	C_{20} C_{21} C_{22} C_{23}	-0.5(4)
CI-NI-Co-C9	1/9.19 (10)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.3 (4)
O1—C8—C9—N2	1.9 (3)	C20—C21—C22—C25	179.6 (2)
N1-C8-C9-N2	-177.75 (18)	C21—C22—C23—C24	1.3 (3)
N3—N2—C9—C8	-173.9 (2)	C25—C22—C23—C24	-178.9 (2)
C17—N5—C10—C15	22.5 (3)	C22—C23—C24—C19	-1.3 (4)
C17—N5—C10—C11	-160.22 (19)	C20—C19—C24—C23	0.5 (3)
C15—C10—C11—C12	-0.1 (3)	N9-C19-C24-C23	177.64 (19)
N5-C10-C11-C12	-177.53 (18)	C19—N9—C26—O3	3.1 (3)
C10-C11-C12-C13	0.0 (3)	C19—N9—C26—C27	-176.86 (18)
C11—C12—C13—C14	-0.1 (3)	N11—N10—C27—C26	-173.6 (2)
C11—C12—C13—C16	178.9 (2)	O3-C26-C27-N10	0.8 (3)
C12—C13—C14—C15	0.2 (3)	N9-C26-C27-N10	-179.23 (18)
C16-C13-C14-C15	-178.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H··· A
N1—H1A····O1 ⁱ	0.86 (3)	2.04 (3)	2.867 (2)	162 (2)
N5—H5A····O2 ⁱ	0.85 (3)	2.01 (3)	2.833 (2)	163 (2)
C15—H15…O2	0.91 (3)	2.34 (2)	2.905 (3)	120 (2)
C18—H18B…O2 ⁱ	0.99 (3)	2.57 (3)	3.353 (3)	136 (2)
N9—H9 <i>C</i> ···O3 ⁱ	0.81 (3)	2.05 (3)	2.835 (2)	163 (2)
C24—H24…O3	0.91 (3)	2.27 (3)	2.882 (3)	125 (2)

Symmetry code: (i) x, -y+1/2, z-1/2.