ISSN 2414-3146

Received 23 June 2022
Accepted 10 August 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; amide bond; perfluorinated pyridine; formamide; hydrogen bonding.

CCDC reference: 2196118

Structural data: full structural data are available from iucrdata.iucr.org

N-(2,3,5,6-Tetrafluoropyridin-4-yl)formamide

Bailey D. Newell, ${ }^{\text {a }}$ Colin D. McMillen ${ }^{\text {b }}$ and John P. Lee ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ The University of Tennessee at Chattanooga, Department of Chemistry and Physics, \#2252, 615 McCallie Avenue, Chattanooga, TN 37403, USA, and ${ }^{\text {b }}$ Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
${ }^{*}$ Correspondence e-mail: John-Lee@utc.edu

The title compound, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}$, displays amide bond lengths of 1.218 (3) \AA and 1.366 (3) \AA for the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds, respectively. The $\mathrm{C}_{\mathrm{p}}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ ($\mathrm{p}=$ pyridine) torsion angle of $179.0(2)^{\circ}$ indicates an anti-conformation for the grouping. Intermolecular hydrogen bonding is observed between the amine $\mathrm{N}-$ H group and the carbonyl O atom, which generates chains of molecules propagating along the b-axis direction.

Chemical scheme

Structure description

The title compound, N-(2,3,5,6-tetrafluoropyridin-4-yl)formamide, (I), contains a perfluorinated pyridine heterocycle and a formamide group para to the pyridine N atom. These groups have shown utility in independent biochemical applications. For example, fluoroaromatic compounds are used in positron emission tomography (Hashizume et al., 1996) and pyridine rings can act as the bioisosteres of amides (Sun et al., 2019). The structure reported here combines these components and could be of interest for biochemical applications. A search of the CCDC shows no structures that contain a pyridine ring functionalized with a formamide group in the 4-position (Groom et al., 2016).

The crystal structure of (I) represents the first example of a perfluorinated pyridine ring with a formamide functional group (Fig. 1). The amide bond lengths for (I) are 1.218 (3) \AA and 1.366 (3) \AA for the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds, respectively, which are in good agreement with the corresponding bonds in the related compounds N-phenylformamide (Omondi et al., 2014), N-(2,6-difluorophenyl)formamide (Omondi et al., 2009b), and N-(2,6-dibromophenyl)formamide (Omondi et al., 2009a). As observed in other structures, the amide bond lengths for (I) are consistent with little to no $\mathrm{N}=\mathrm{C} / \mathrm{C}-$ O bond resonance contribution. The formamide group and pyridine ring in (I) are somewhat twisted with a dihedral angle of $13.21(5)^{\circ}$. This is similar to N-phenyl-

Figure 1
Displacement ellipsoid perspective view (50% probability) for the title structure showing the atom-numbering scheme.
formamide (Omondi et al., 2014) (dihedral angle between the benzene ring and formamide groups $=10.5^{\circ}$) but in contrast to N-(2,6-difluorophenyl)formamide (Omondi et al., 2009b) and N-(2,6-dibromophenyl)formamide (Omondi et al., 2009a) where the equivalent dihedral angles are 58.4 and 83.2°, respectively. The latter structures indicate that the steric effects likely increase from H to F to Br ; however, this large deviation from planarity is not observed in (I). Furthermore, the torsion angle of 179.0 (2) ${ }^{\circ}$ for $\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1$ in (I) indicates a near anti-conformation, but in structures with a benzene ring, the carbonyl-benzene conformation is syn regardless of aromatic substituents (Omondi et al., 2009a,b, 2014). Taken together, these indicate that the pyridine ring is

Figure 2
Intermolecular hydrogen bonding forming a chain propagating along the b-axis direction where hydrogen bonds are represented with dashed lines.

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	$0.87(3)$	$1.96(3)$	$2.814(3)$	$171(3)$

Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.
playing a role in the structure beyond the sterics of the aromatic ring substituents. The pyridyl related compounds N -(3,5-dichloro-2-pyridyl)formamide (Resinger et al., 2005) and formyl(2-pyridyl)amine (Bock et al., 1996) also show an anti-conformation for the carbonyl and pyridine ring as well as near coplanarity of the functional groups as observed for the title compound.

In the extended structure of (I) the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with a bond angle of $171(3)^{\circ}$ (Table 1), which suggests evidence of intermediate-strong hydrogen bonding (Arunan et al., 2011). The hydrogen bonding generates chains of molecules propagating along the b-axis direction in the extended structure (Fig. 2) with adjacent molecules in the chain related by 2_{1} screw axis symmetry. Neighboring sets of chains form an L shape through a nearly orthogonal $\left(84^{\circ}\right)$ orientation of the pyridine rings in each chain (Fig. 3). This brings about short contacts between the pyridyl nitrogen atoms and the π systems of these orthogonal pyridine rings ($\mathrm{N} \cdots$ centroid $=3.502 \AA$; shortest $\mathrm{N} \cdots \mathrm{C}=$ 3.032 Å).

Figure 3
Extended structure as viewed looking down the b-axis showing the Lshape that is formed by the orthogonal pyridine rings of neighboring chains.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}$
$M_{\text {r }}$	194.10
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	5.1183 (4), 6.2707 (6), 20.6294 (16)
$V\left(\AA^{3}\right)$	662.11 (10)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.21
Crystal size (mm)	$0.28 \times 0.06 \times 0.05$
Data collection	
Diffractometer	Bruker D8 Venture Photon 2
Absorption correction	$\begin{aligned} & \text { Multi-scan (SADABS; Bruker, } \\ & \text { 2018) } \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.897, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	3556, 1309, 1200
$R_{\text {int }}$	0.029
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.618
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.028, 0.066, 1.09
No. of reflections	1309
No. of parameters	122
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.14, -0.19
Absolute structure	Flack x determined using 424 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter	-0.1 (6)

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), and SHELXTL (Sheldrick, 2008).

Synthesis and crystallization

A 50 ml round-bottom flask was charged with 2,3,5,6-tetra-fluoropyridin-4-amine $(0.1078 \mathrm{~g}, \quad 0.6491 \mathrm{mmol}), \quad p$-toluenesulfonic acid $(0.0046 \mathrm{~g}, 0.027 \mathrm{mmol})$, trimethyl orthoformate $(0.28 \mathrm{ml}, 2.6 \mathrm{mmol})$, and toluene $(5 \mathrm{ml})$. A Dean-Stark apparatus was filled with toluene (10 ml), and the solution was refluxed for 16 h . A homogenous colorless solution was
obtained. Crystals were obtained by dichloromethane layered with hexanes, yielding orange needles. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\delta): 91.1(2 \mathrm{~F}, d,-\mathrm{CF}), 154.9(2 \mathrm{~F}, d,-\mathrm{CF}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right)$: $9.00(1 \mathrm{H}, s,-\mathrm{O}=\mathrm{CH}), 7.70(1 \mathrm{H}, s,-\mathrm{NH})$.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

Funding information

Acknowledgements are made to the University of Tennessee at Chattanooga, and the Grote Chemistry Fund at UTC.

References

Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. \& Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637-1641.

Bock, H., Van, T. T. H., Solouki, B., Schödel, H., Artus, G., Herdtwech, E. \& Hermann, W. A. (1996). Liebigs Ann. pp. 403407. DOI: 10.1002/jlac. 199619960316.

Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hashizume, T., Hashimoto, N. \& Miyake, Y. (1996). Japan Patent JP 08310973 A.
Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. \& Layh, M. (2014). Acta Cryst. B70, 106-114.
Omondi, B., Levendis, D. C., Layh, M. \& Fernandes, M. A. (2009a). Acta Cryst. C65, 160-162.
Omondi, B., Levendis, D. C., Layh, M. \& Fernandes, M. A. (2009b). Acta Cryst. C65, 470-475.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Resinger, A., Wentrup, C., Byriel, K. A. \& Kennard, C. H. L. (2005). Acta Cryst. E61, o2053-o2054.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sun, S., Jia, Q. \& Zhang, Z. (2019). Bioorg. Med. Chem. Lett. 29, 2535-2550.

full crystallographic data

IUCrData (2022). 7, x220804 [https://doi.org/10.1107/S2414314622008045]
N-(2,3,5,6-Tetrafluoropyridin-4-yl)formamide
Bailey D. Newell, Colin D. McMillen and John P. Lee

N-(2,3,5,6-Tetrafluoropyridin-4-yl)formamide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=194.10$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.1183$ (4) \AA
$b=6.2707(6) \AA$
$c=20.6294(16) \AA$
$V=662.11(10) \AA^{3}$
$Z=4$
$F(000)=384$

Data collection

Bruker D8 Venture Photon 2
diffractometer
Radiation source: Incoatec $\mathrm{I} \mu \mathrm{S}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
$T_{\text {min }}=0.897, T_{\text {max }}=1.000$
3556 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.066$
$S=1.09$
1309 reflections
122 parameters
0 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
$D_{\mathrm{x}}=1.947 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2461 reflections
$\theta=3.4-26.0^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Column, colourless
$0.28 \times 0.06 \times 0.05 \mathrm{~mm}$

1309 independent reflections
1200 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-6 \rightarrow 6$
$k=-7 \rightarrow 7$
$l=-25 \rightarrow 25$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0317 P)^{2}+0.041 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}
Absolute structure: Flack x determined using 424 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter: -0.1 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.9516(3)$	$-0.1033(2)$	$0.60146(7)$	$0.0280(4)$
F2	$0.5417(3)$	$-0.0546(2)$	$0.68314(6)$	$0.0218(4)$
F3	$0.3999(3)$	$0.6218(2)$	$0.58674(7)$	$0.0246(4)$
F4	$0.8168(3)$	$0.5429(2)$	$0.51143(7)$	$0.0246(4)$
O1	$-0.0674(4)$	$0.4673(3)$	$0.73924(8)$	$0.0239(4)$
N1	$0.8836(4)$	$0.2207(3)$	$0.55635(10)$	$0.0194(5)$
N2	$0.2513(4)$	$0.3050(3)$	$0.68341(10)$	$0.0176(5)$
H2	$0.208(6)$	$0.193(5)$	$0.7052(15)$	$0.030(8)^{*}$
C1	$0.8095(5)$	$0.0761(4)$	$0.59878(12)$	$0.0186(6)$
C2	$0.6040(5)$	$0.0998(4)$	$0.64033(11)$	$0.0172(5)$
C3	$0.4581(5)$	$0.2879(4)$	$0.64007(11)$	$0.0153(5)$
C4	$0.5327(5)$	$0.4385(4)$	$0.59394(11)$	$0.0168(5)$
C5	$0.7440(5)$	$0.3963(4)$	$0.55472(11)$	$0.0188(6)$
C6	$0.1120(5)$	$0.4818(4)$	$0.70070(12)$	$0.0195(6)$
H6	0.155131	0.616615	0.682599	$0.023 *$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0275(9)$	$0.0267(8)$	$0.0299(8)$	$0.0124(7)$	$0.0063(8)$	$0.0033(6)$
F2	$0.0255(8)$	$0.0183(7)$	$0.0215(7)$	$0.0018(7)$	$0.0038(7)$	$0.0059(6)$
F3	$0.0292(9)$	$0.0193(7)$	$0.0253(8)$	$0.0059(7)$	$0.0041(8)$	$0.0053(6)$
F4	$0.0272(8)$	$0.0280(8)$	$0.0187(7)$	$-0.0051(7)$	$0.0039(7)$	$0.0064(6)$
O1	$0.0232(10)$	$0.0228(9)$	$0.0255(9)$	$0.0014(9)$	$0.0100(9)$	$-0.0038(7)$
N1	$0.0152(11)$	$0.0287(11)$	$0.0143(10)$	$-0.0001(9)$	$-0.0007(10)$	$-0.0007(8)$
N2	$0.0183(11)$	$0.0174(10)$	$0.0170(10)$	$-0.0002(9)$	$0.0036(11)$	$0.0011(8)$
C1	$0.0167(13)$	$0.0196(12)$	$0.0195(12)$	$0.0029(10)$	$-0.0009(12)$	$-0.0008(10)$
C2	$0.0183(13)$	$0.0185(12)$	$0.0149(12)$	$-0.0013(10)$	$-0.0003(12)$	$0.0013(9)$
C3	$0.0146(11)$	$0.0197(11)$	$0.0117(11)$	$-0.0002(10)$	$-0.0011(11)$	$-0.0029(8)$
C4	$0.0182(13)$	$0.0176(11)$	$0.0146(11)$	$0.0010(11)$	$-0.0021(11)$	$0.0005(9)$
C5	$0.0211(13)$	$0.0220(12)$	$0.0132(12)$	$-0.0055(11)$	$-0.0026(12)$	$0.0026(10)$
C6	$0.0198(14)$	$0.0183(12)$	$0.0205(12)$	$0.0005(11)$	$0.0016(13)$	$-0.0021(9)$

Geometric parameters (${ }_{A},{ }^{\circ}$)

F1-C1	$1.341(3)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.390(3)$
$\mathrm{F} 2-\mathrm{C} 2$	$1.348(3)$	$\mathrm{N} 2-\mathrm{H} 2$	$0.87(3)$
$\mathrm{F} 3-\mathrm{C} 4$	$1.343(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.365(3)$
$\mathrm{F} 4-\mathrm{C} 5$	$1.335(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.396(3)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.218(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.394(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.313(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.376(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.316(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{~N} 2-\mathrm{C} 6$	$1.366(3)$		$118.0(2)$

C6-N2-C3	$128.9(2)$	C4-C3-C2	$115.4(2)$
C6-N2-H2	$113(2)$	F3-C4-C5	$119.8(2)$
C3-N2-H2	$118(2)$	F3-C4-C3	$121.1(2)$
N1-C1-F1	$116.7(2)$	C5-C4-C3	$119.1(2)$
N1-C1-C2	$124.4(2)$	N1-C5-F4	$116.3(2)$
F1-C1-C2	$118.9(2)$	N1-C5-C4	$125.0(2)$
F2-C2-C1	$121.0(2)$	F4-C5-C4	$118.7(2)$
F2-C2-C3	$118.9(2)$	O1-C6-N2	$120.2(2)$
C1-C2-C3	$120.1(2)$	O1-C6-H6	119.9
N2-C3-C4	$126.5(2)$	N2-C6-H6	119.9
C5-N1-C1-F1	$-179.4(2)$		
C5-N1-C1-C2	$-0.8(4)$	N2-C3-C4-F3	$-1.1(4)$
N1-C1-C2-F2	$-179.1(2)$	N2-C3-C4-F3	$176.8(2)$
F1-C1-C2-F2	$-0.6(3)$	C2-C3-C4-C5	$179.8(2)$
N1-C1-C2-C3	$-0.7(4)$	C1-N1-C5-F4	$-2.3(3)$
F1-C1-C2-C3	$177.9(2)$	C1-N1-C5-C4	$-179.5(2)$
C6-N2-C3-C4	$-15.2(4)$	F3-C4-C5-N1	$0.7(4)$
C6-N2-C3-C2	$167.0(2)$	C3-C4-C5-N1	$-178.2(2)$
F2-C2-C3-N2	$-1.3(3)$	F3-C4-C5-F4	$0.9(4)$
C1-C2-C3-N2	$-179.8(2)$	C3-C4-C5-F4	$2.0(3)$
F2-C2-C3-C4	$-179.3(2)$	C3-N2-C6-O1	$-178.9(2)$
C1-C2-C3-C4	$2.2(3)$	$179.0(2)$	

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{1} \mathrm{i}$	$0.87(3)$	$1.96(3)$	$2.814(3)$	$171(3)$

Symmetry code: (i) $-x, y-1 / 2,-z+3 / 2$.

