

ISSN 2414-3146

Received 13 September 2022 Accepted 26 September 2022

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; phenothiazine; ynamine; heterocycle conformation..

CCDC reference: 2209381

Structural data: full structural data are available from iucrdata.iucr.org

10-[(4-Nitrophenyl)ethynyl]-10H-phenothiazine

Tsunehisa Okuno* and Ikue Doi

Department of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan. *Correspondence e-mail: okuno@wakayama-u.ac.jp

The title compound, $C_{20}H_{12}N_2OS$, is a 10-ethynyl-10*H*-phenothiazine derivative. The phenothiazine unit has a butterfly shape, where the folding angle between the two benzene rings is 153.87 (7)°, which is almost as in other reported phenothiazine derivatives. The dihedral angle between the mean plane including the C atoms bonded to the phenothiazine N atom and the benzene ring of the nitrobenzene group is 10.34 (5)°. The near planar geometry of the molecule is reasonably explained by intramolecular charge-transfer interactions.

Structure description

Phenothiazines are known to be good electron donors and have attracted interest from the point of view of photo-induced electron transfer or magnetism (Sun *et al.*, 2004; Okamoto *et al.*, 2004; Okada *et al.*, 1996). A phenothiazine derivative, 10-(prop-1-yn-1-yl)-10*H*-phenothiazine, which incorporates an ynamine moiety, is well known as the first reported ynamine compound (Zaugg *et al.*, 1958), and its structure has already been studied (Umezono & Okuno, 2012). Other structures of some related derivatives have also been analysed (Umezono & Okuno, 2013; Umezono *et al.*, 2013).

In the title compound, the phenothiazine moiety has a butterfly structure, as shown in Fig. 1, in which the dihedral angle between the two benzene rings (the C1–C6 and C7–C12 mean planes) is 153.87 (7)°. The central six-membered ring has a boat conformation, in which the S1···N1 separation is 3.0565 (14) Å. The structure around the phenothiazine nitrogen atom is pyramidal, with atom N1 located 0.1271 (16) Å above the C1/C12/C13 plane. The dihedral angle between the C1/C12/C13 plane and the C15–C20 benzene ring is 10.34 (5)°. The molecule is thus almost planar, and this feature is reasonably explained by intramolecular charge-transfer interactions between phenothiazine and nitrophenyl units.

Figure 1

 $O\bar{R}TEP$ view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Synthesis and crystallization

Single crystals suitable for X-ray analysis were obtained by concentration of a dichloromethane solution. The title compound was prepared through the Sonogashira-coupling reaction between 1-iodo-4-nitrobenzene and 10-ethynyl-10Hphenothiazine, as follows: to a solution of 1-iodo-4-nitrobenzene (0.33 g, 1.3 mmol) and 10-ethynyl-10H-phenothiazine (0.30 g, 1.3 mmol) in 13 ml of THF and triethylamine (1:1 v/v), tetrakis(triphenylphosphine)palladium(0) (0.093 g, 0.080 mmol) and copper(I) iodide (8.0 mg, 0.040 mmol) were added. The solution was stirred for 20 h and filtrated. The filtrate was concentrated and the residue was extracted with CHCl₃. The organic layer was washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by gel permeation chromatography to give 32 mg (6.9% yield) of the title compound, as pale-red crystals. ¹H NMR (CDCl₃): $\delta = 8.21$ (d, J = 9.0 Hz, 0.8 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 7.3 Hz, 2H), 7.26 (t, J =7.3 Hz, 2H), 7.17 (d, J = 6.5 Hz, 2H), 7.10 (t, J = 6.5 Hz, 2H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Funding information

This work was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D from the Japan Science and Technology Agency (JST).

Table	1	
Experi	mental	details.

Crystal data Chemical formula $C_{20}H_{12}N_2O_2S$ M_{r} 344.39 Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 93 a, b, c (Å) 8.1891 (15), 8.2417 (15), 12.813 (3) α, β, γ (°) V (Å³) 81.632 (9), 81.394 (10), 66.649 (8) 781.4 (3) Z 2 Radiation type Μο Κα μ (mm⁻¹) 0.22 Crystal size (mm) $0.15 \times 0.12 \times 0.05$ Data collection Diffractometer Rigaku Saturn724+ Absorption correction Numerical (NUMABS; Rigaku, 1999) 0.977, 0.988 T_{\min}, T_{\max} 5406, 2701, 2234 No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections $R_{\rm int}$ 0.021 $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$ 0.595 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.100, 1.09 No. of reflections 2701 226 No. of parameters H-atom treatment H-atom parameters constrained $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$ 0.24, -0.22

Computer programs: CrystalClear (Rigaku, 2008), SHELXD2013/2 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and CrystalStructure (Rigaku, 2019).

References

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Okada, K., Imakura, T., Oda, M., Murai, H. & Baumgarten, M. (1996). J. Am. Chem. Soc. 118, 3047–3048.
- Okamoto, T., Kuratsu, M., Kozaki, M., Hirotsu, K., Ichimura, A., Matsushita, T. & Okada, K. (2004). Org. Lett. 6, 3493–3496.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388–1401.
- Umezono, S., Ikeda, S. & Okuno, T. (2013). Acta Cryst. C69, 1553– 1556.
- Umezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.
- Umezono, S. & Okuno, T. (2013). J. Mol. Struct. 1049, 293-298.
- Zaugg, H. E., Swett, L. & Stone, G. R. (1958). J. Org. Chem. 23, 1389– 1390.

full crystallographic data

IUCrData (2022). 7, x220942 [https://doi.org/10.1107/S2414314622009427]

10-[(4-Nitrophenyl)ethynyl]-10H-phenothiazine

Tsunehisa Okuno and Ikue Doi

10-[(4-Nitrophenyl)ethynyl]-10H-phenothiazine

Crystal data

 $C_{20}H_{12}N_2O_2S$ $M_r = 344.39$ Triclinic, $P\overline{1}$ a = 8.1891 (15) Å b = 8.2417 (15) Å c = 12.813 (3) Å $\alpha = 81.632 (9)^{\circ}$ $\beta = 81.394 (10)^{\circ}$ $\gamma = 66.649 (8)^{\circ}$ $V = 781.4 (3) \text{ Å}^{3}$

Data collection

Rigaku Saturn724+ diffractometer Detector resolution: 7.111 pixels mm⁻¹ ω scans Absorption correction: numerical (NUMABS; Rigaku, 1999) $T_{\min} = 0.977, T_{\max} = 0.988$ 5406 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.100$ S = 1.092701 reflections 226 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 356.00 $D_x = 1.464 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 2498 reflections $\theta = 1.6-31.3^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 93 KBlock, red $0.15 \times 0.12 \times 0.05 \text{ mm}$

2701 independent reflections 2234 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.021$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 1.6^\circ$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -11 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.2098P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Refinement. The C-bound H atoms were placed in ideal positions and were refined as riding on their parent C atoms. $U_{iso}(H)$ values of the H atoms were set at $1.2U_{eq}$ (parent atom).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	-0.18967 (6)	1.42062 (6)	0.10364 (4)	0.02912 (16)
01	0.67949 (19)	-0.06179 (18)	0.41540 (13)	0.0439 (4)
O2	0.5066 (2)	-0.10830 (18)	0.32062 (13)	0.0465 (4)
N1	-0.02003 (19)	1.04512 (18)	0.21162 (11)	0.0224 (3)
N2	0.5590 (2)	-0.0089(2)	0.35670 (14)	0.0341 (4)
C1	-0.1331 (2)	1.0636 (2)	0.13171 (13)	0.0211 (4)
C2	-0.1530 (2)	0.9172 (2)	0.10350 (14)	0.0256 (4)
H2	-0.0962	0.8040	0.1403	0.031*
C3	-0.2544 (2)	0.9333 (3)	0.02236 (15)	0.0283 (4)
Н3	-0.2634	0.8309	0.0022	0.034*
C4	-0.3429 (2)	1.0989 (2)	-0.02954 (15)	0.0279 (4)
H4	-0.4134	1.1107	-0.0849	0.034*
C5	-0.3276 (2)	1.2470 (2)	0.00017 (14)	0.0262 (4)
Н5	-0.3903	1.3608	-0.0341	0.031*
C6	-0.2220 (2)	1.2315 (2)	0.07908 (14)	0.0231 (4)
C7	-0.1384 (2)	1.3617 (2)	0.23645 (14)	0.0224 (4)
C8	-0.1760 (2)	1.4970 (2)	0.30086 (15)	0.0263 (4)
H8	-0.2378	1.6169	0.2748	0.032*
C9	-0.1241 (2)	1.4584 (2)	0.40224 (15)	0.0274 (4)
Н9	-0.1490	1.5515	0.4454	0.033*
C10	-0.0355 (2)	1.2829 (2)	0.44086 (15)	0.0283 (4)
H10	0.0026	1.2558	0.5100	0.034*
C11	-0.0028 (2)	1.1470 (2)	0.37808 (14)	0.0244 (4)
H11	0.0552	1.0270	0.4053	0.029*
C12	-0.0541 (2)	1.1850 (2)	0.27614 (14)	0.0216 (4)
C13	0.0882 (2)	0.8781 (2)	0.24405 (13)	0.0226 (4)
C14	0.1838 (2)	0.7265 (2)	0.26460 (14)	0.0234 (4)
C15	0.2884 (2)	0.5416 (2)	0.28480 (13)	0.0217 (4)
C16	0.4081 (2)	0.4783 (2)	0.36260 (14)	0.0255 (4)
H16	0.4267	0.5599	0.4001	0.031*
C17	0.4991 (2)	0.2982 (2)	0.38510 (15)	0.0268 (4)
H17	0.5802	0.2548	0.4379	0.032*
C18	0.4703 (2)	0.1825 (2)	0.32941 (15)	0.0251 (4)
C19	0.3582 (2)	0.2398 (2)	0.24936 (15)	0.0255 (4)
H19	0.3436	0.1570	0.2110	0.031*
C20	0.2681 (2)	0.4202 (2)	0.22653 (14)	0.0244 (4)
H20	0.1919	0.4623	0.1711	0.029*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0395 (3)	0.0158 (2)	0.0288 (3)	-0.0084 (2)	-0.0061 (2)	0.00428 (18)
01	0.0330 (8)	0.0244 (7)	0.0613 (10)	0.0006 (6)	-0.0119 (7)	0.0094 (7)
02	0.0478 (9)	0.0152 (7)	0.0734 (12)	-0.0077 (6)	-0.0084 (8)	-0.0054 (7)
N1	0.0264 (8)	0.0130 (7)	0.0236 (8)	-0.0034 (6)	-0.0026 (6)	-0.0003 (6)

N2	0.0272 (9)	0.0167 (8)	0.0481 (11)	-0.0020 (7)	0.0046 (8)	0.0011 (8)
C1	0.0190 (8)	0.0194 (9)	0.0211 (9)	-0.0052 (7)	0.0021 (7)	-0.0009 (7)
C2	0.0245 (9)	0.0182 (9)	0.0299 (10)	-0.0057 (7)	0.0014 (8)	-0.0004 (7)
C3	0.0262 (9)	0.0263 (10)	0.0327 (10)	-0.0113 (8)	0.0024 (8)	-0.0056 (8)
C4	0.0221 (9)	0.0333 (10)	0.0272 (10)	-0.0098 (8)	-0.0005 (7)	-0.0033 (8)
C5	0.0213 (9)	0.0238 (9)	0.0260 (10)	-0.0033 (8)	0.0007 (7)	0.0026 (7)
C6	0.0235 (9)	0.0187 (9)	0.0228 (9)	-0.0055 (7)	0.0023 (7)	-0.0012 (7)
C7	0.0221 (9)	0.0183 (9)	0.0251 (9)	-0.0074 (7)	-0.0011 (7)	0.0007 (7)
C8	0.0253 (9)	0.0152 (9)	0.0356 (11)	-0.0067 (7)	0.0013 (8)	-0.0013 (7)
C9	0.0298 (10)	0.0238 (10)	0.0314 (10)	-0.0131 (8)	0.0025 (8)	-0.0083 (8)
C10	0.0328 (10)	0.0252 (10)	0.0274 (10)	-0.0122 (8)	-0.0028 (8)	-0.0012 (8)
C11	0.0261 (9)	0.0174 (9)	0.0268 (10)	-0.0068 (7)	-0.0019 (7)	0.0016 (7)
C12	0.0207 (8)	0.0155 (8)	0.0259 (9)	-0.0054 (7)	0.0016 (7)	-0.0024 (7)
C13	0.0257 (9)	0.0181 (9)	0.0212 (9)	-0.0068 (8)	-0.0008 (7)	0.0002 (7)
C14	0.0270 (9)	0.0183 (9)	0.0228 (9)	-0.0067 (8)	-0.0022 (7)	-0.0018 (7)
C15	0.0213 (9)	0.0166 (8)	0.0230 (9)	-0.0052 (7)	0.0025 (7)	0.0004 (7)
C16	0.0257 (9)	0.0203 (9)	0.0290 (10)	-0.0074 (8)	-0.0005 (8)	-0.0036 (7)
C17	0.0222 (9)	0.0230 (9)	0.0302 (10)	-0.0045 (8)	-0.0034 (8)	0.0016 (8)
C18	0.0205 (9)	0.0142 (9)	0.0338 (10)	-0.0021 (7)	0.0026 (8)	-0.0003 (7)
C19	0.0245 (9)	0.0194 (9)	0.0309 (10)	-0.0073 (8)	0.0030 (8)	-0.0060 (7)
C20	0.0241 (9)	0.0209 (9)	0.0256 (9)	-0.0066 (7)	-0.0007 (7)	-0.0020 (7)

Geometric parameters (Å, °)

S1—C6	1.7591 (19)	С8—С9	1.381 (3)
S1—C7	1.7661 (19)	C8—H8	0.9500
01—N2	1.231 (2)	C9—C10	1.390 (3)
O2—N2	1.232 (2)	С9—Н9	0.9500
N1—C13	1.353 (2)	C10—C11	1.390 (3)
N1—C12	1.430(2)	C10—H10	0.9500
N1—C1	1.434 (2)	C11—C12	1.386 (3)
N2—C18	1.464 (2)	C11—H11	0.9500
C1—C2	1.383 (3)	C13—C14	1.198 (2)
C1—C6	1.406 (2)	C14—C15	1.428 (2)
С2—С3	1.385 (3)	C15—C16	1.401 (3)
С2—Н2	0.9500	C15—C20	1.405 (2)
С3—С4	1.388 (3)	C16—C17	1.380 (2)
С3—Н3	0.9500	C16—H16	0.9500
C4—C5	1.386 (3)	C17—C18	1.379 (3)
C4—H4	0.9500	C17—H17	0.9500
С5—С6	1.386 (3)	C18—C19	1.384 (3)
С5—Н5	0.9500	C19—C20	1.382 (2)
С7—С8	1.392 (2)	C19—H19	0.9500
C7—C12	1.396 (2)	C20—H20	0.9500
C6	100 18 (8)	С8—С9—Н9	120.1
$C13_N1_C12$	118 98 (15)	C_{10} C_{9} H9	120.1
C13—N1—C1	116.86 (15)	C9—C10—C11	119.86 (17)

C12—N1—C1	121.74 (13)	C9—C10—H10	120.1
O1—N2—O2	123.51 (16)	C11-C10-H10	120.1
O1—N2—C18	118.62 (17)	C12—C11—C10	120.61 (16)
O2—N2—C18	117.86 (17)	C12—C11—H11	119.7
C2—C1—C6	119.15 (17)	C10-C11-H11	119.7
C2-C1-N1	120.85 (15)	C11—C12—C7	119.39 (16)
C6-C1-N1	119.98 (16)	C11—C12—N1	120.54 (15)
C1-C2-C3	120.95 (17)	C7—C12—N1	120.07 (16)
C1-C2-H2	119.5	C14-C13-N1	174.55 (19)
C3-C2-H2	119.5	C_{13} C_{14} C_{15}	175 25 (19)
$C_2 - C_3 - C_4$	120.04 (18)	$C_{16} - C_{15} - C_{20}$	119.22(15)
C2—C3—H3	120.0	C16-C15-C14	121 62 (16)
C4_C3_H3	120.0	$C_{10} = C_{15} = C_{14}$	121.02(10) 119.10(16)
$C_{5} - C_{4} - C_{3}$	119 34 (18)	$C_{20} = C_{15} = C_{14}$	119.10(10) 120.40(17)
$C_{5} = C_{4} = C_{5}$	119.34 (10)	$C_{17} = C_{16} = C_{15}$	110.8
$C_3 = C_4 = H_4$	120.3	C_{15} C_{16} H_{16}	110.8
C_{4} C_{5} C_{6}	120.5	C_{18} C_{17} C_{16}	119.0
$C_{4} = C_{5} = C_{0}$	121.05 (10)	$C_{18} = C_{17} = C_{10}$	120.6
C4 = C5 = H5	119.5	$C_{16} = C_{17} = H_{17}$	120.0
C_{0}	119.5	$C_{10} - C_{17} - C_{10}$	120.0
$C_{5} = C_{6} = C_{1}$	119.43(17) 118.75(12)	C17 - C18 - C19	122.01(10)
C_{3}	110.73(13) 121.62(14)	C10 C18 N2	119.09(17)
$C_{1} = C_{0} = S_{1}$	121.03(14) 110.72(17)	C19 - C18 - N2	118.29(17)
$C_{0} = C_{1} = C_{12}$	119.75 (17)	C_{20} C_{10} U_{10}	118.49 (17)
$C_{8} - C_{7} - S_{1}$	118.41(13) 121.78(14)	C20-C19-H19	120.8
$C_{12} - C_{7} - S_{1}$	121.78 (14)	C18—C19—H19	120.8
C_{2}	120.60 (16)	C19 - C20 - C15	120.37 (17)
C9—C8—H8	119.7	C19—C20—H20	119.8
C/-C8-H8	119.7	C15—C20—H20	119.8
C8—C9—C10	119.75 (17)		
C_{13} N1 $-C_{1}$ $-C_{2}$	11 1 (2)	C10-C11-C12-C7	0.3(3)
$C_{12} = N_1 = C_1 = C_2$	-151.03.(16)	C10 - C11 - C12 - N1	179 89 (16)
C12 - N1 - C1 - C2	-167.32(15)	$C_{8} - C_{7} - C_{12} - C_{11}$	-23(3)
C_{12} N1 C_{1} C_{6}	30.6.(2)	S1 C7 C12 C11	2.5(3)
C6-C1-C2-C3	20.0(2)	$C_{8} = C_{7} = C_{12} = C_{11}$	174.37(15) 178.07(16)
N1 - C1 - C2 - C3	-17647(15)	S1 - C7 - C12 - N1	-52(2)
$C_1 - C_2 - C_3 - C_4$	-22(3)	C_{13} N1 C_{12} C_{11}	-10.9(2)
$C_1 = C_2 = C_3 = C_4$	2.2(3)	$C1 \times 11 \times 12 \times C11$	10.9(2)
$C_2 - C_3 - C_4 - C_5$	1.5(3)	C1 = N1 = C12 = C11	150.89(10) 168 71(15)
C_{1}^{4} C_{2}^{5} C_{6}^{6} C_{1}^{1}	-1.7(3)	$C1 \times 11 = C12 = C7$	-29.5(2)
C_{4} C_{5} C_{6} S_{1}	1.7(3) 173 52 (13)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	-29(3)
$C_{1}^{2} = C_{1}^{2} = C_{0}^{2} = S_{1}^{2}$	173.32(13)	$C_{20} = C_{15} = C_{10} = C_{17}$	2.9(3)
$C_2 - C_1 - C_0 - C_3$	0.0(2)	C15 C16 C17 C18	173.31(10) 0.2(3)
11 - 01 - 00 - 03	-175 11 (13)	C15 - C10 - C17 - C18	0.2(3)
$V_2 - C_1 - C_0 - S_1$	3 3 (2)	$C_{10} - C_{17} - C_{10} - C_{19}$	2.3(3) -17674(15)
111 - 01 - 00 - 51	5.5(2) 155 07 (14)	01 N2 C18 C17	-123(2)
$C_7 = S_1 = C_6 = C_3$	-28.87(14)	$O_1 - 102 - C_{10} - C_{17}$ $O_2 = N_2 - C_{18} - C_{17}$	12.3(2)
$C_1 = C_1 = C_1$	20.07(10) -152.28(14)	02 - 102 - 010 - 017	100.00(17)
U = 31 = U = U = 0	133.20(14)	UI-INZ-UIO-UIY	100.07(1/)

C6—S1—C7—C12	29.96 (16)	O2—N2—C18—C19	-12.4 (2)
C12—C7—C8—C9	2.6 (3)	C17—C18—C19—C20	-1.8 (3)
S1—C7—C8—C9	-174.25 (14)	N2-C18-C19-C20	177.16 (15)
C7—C8—C9—C10	-0.7 (3)	C18—C19—C20—C15	-1.0 (2)
C8—C9—C10—C11	-1.3 (3)	C16—C15—C20—C19	3.3 (3)
C9—C10—C11—C12	1.5 (3)	C14—C15—C20—C19	-175.53 (16)