IUCrData

ISSN 2414-3146

Received 19 September 2022 Accepted 29 September 2022

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; nitrobenzene; alkyne; chalcone; phenyl ring.

CCDC reference: 2210152

Structural data: full structural data are available from iucrdata.iucr.org

3-(3-Nitrophenyl)-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one

Vinaya,^a Yeriyur B. Basavaraju,^a Holalagudu A. Nagma Banu,^b Balakrishna Kalluraya,^b Hemmige S. Yathirajan,^a* Rishik Balerao^c and Ray J. Butcher^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, ^cThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA. *Correspondence e-mail: yathirajan@hotmail.com

The structure of the title compound, $C_{18}H_{13}NO_4$, shows that the whole molecule is almost planar but with a dihedral angle between the two phenyl rings of 19.22 (5)°. The molecules are linked by $C-H\cdots O$ interactions, forming sheets in the (211) plane.

Structure description

Chalcones are among the leading bioactive flavonoids, with a therapeutic potential implicated to an array of bioactivities that have been investigated by a series of preclinical and clinical studies. They contain an α - β unsaturated carbonyl system, which is present in open-chain form, and two aromatic rings are joined through three-carbon atoms (Kozlowski *et al.*, 2007; Raghav & Garg, 2014). Studies depicting the biological activities of chalcones and their derivatives describe their immense significance as anti-diabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive and neuroprotective agents, and their antioxidant and enzyme inhibitory activities (Lin *et al.*, 2002; Bhat *et al.*, 2005; Trivedi *et al.*, 2007; Lahtchev *et al.*, 2008; Aneja *et al.*, 2018).

Chalcone as a privileged structure in medicinal chemistry has been reviewed by Zhuang *et al.* (2017). A comprehensive review of chalcone derivatives as antileishmanial agents has also been published (de Mello *et al.*, 2018). The crystal structures of (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher *et al.*, 2007), (2E)-1-(3-bromophenyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one (Jasinski *et al.*, 2010), (2E)-3-(3-nitrophenyl)-1-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (Fun *et al.*, 2012) and

data reports

Table 1			
Hydrogen-bond	geometry ((Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C18-H18A\cdots O2^{i}$	0.901 (18)	2.519 (18)	3.3927 (18)	163.6 (15)

Symmetry code: (i) x - 1, y + 2, z.

4'-dimethylamino-3-nitrochalcone, 3-dimethylamino-3'-nitrochalcone and 3'-nitrochalcone (Hall *et al.*, 2020) have been reported.

The present work describes the synthesis and crystal structure of the title compound 3-(3-nitrophenyl)-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Fig. 1), which crystallizes in the triclinic space group $P\overline{1}$ with one molecule in the asymmetric unit. It consists both a 3-nitrophenyl group and a (prop-2-yn-1-yloxy)benzene group linked to a central chalcone moiety. Even though the C-N bond length is 1.4706 (17) Å and thus single, the nitro group is almost coplanar with its phenyl ring [dihedral angle of 18.94 $(6)^{\circ}$] as a result of the steric clash between O1 and H4 and between O2 and H2, respectively. The chalcone group is planar (average deviation from plane of 0.004 Å) and makes dihedral angles of 7.69 (8) and 10.96 (6) $^{\circ}$ with the 3-nitrophenyl ring and the phenyl ring of the (prop-2-yn-1-yloxy)benzene group, respectively. Lastly, the twist between the two phenyl rings which are linked by the chalcone is $19.22 (5)^{\circ}$.

The molecules are linked by C-H···O interactions (Table 1), which form sheets in the $(21\overline{1})$ plane as shown in Fig. 2. There are no π - π interactions between the phenyl rings.

Figure 1

Diagram of molecules showing the atom-labelling scheme. Atomic displacement parameters are at the 30% probability level.

Figure 2

Packing diagram for the title compound showing the C-H···O interactions linking the molecules into sheets in the $(21\overline{1})$ plane.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{18}H_{13}NO_4$
M _r	307.29
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	7.6534 (16), 8.6079 (15), 11.369 (2)
α, β, γ (°)	94.433 (7), 97.953 (8), 97.019 (7)
$V(Å^3)$	732.8 (3)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.33 \times 0.19 \times 0.14$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.634, 0.729
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	47166, 3638, 2700
R _{int}	0.089
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.137, 1.08
No. of reflections	3638
No. of parameters	212
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.28, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

Synthesis and crystallization

A well-stirred solution of 1-[4-(prop-2-ynyloxy)phenyl]ethanone (1 g, 1 mmol) in 20 ml of ethanol was added slowly to alcoholic potassium hydroxide (0.48 g, 1.5 mmol). To this solution, *m*-nitro benzaldehyde (1.03 g, 1.2 mmol) was added. The resulting mixture was stirred at room temperature for 30 min. Then, the separated solid from the reaction mixture was filtered, washed with cold water, dried and recrystallized from ethanol:dimethylformamide mixture (9:1). Golden yellow crystals (yield: 86%, m.p. 453-454 K). The reaction scheme is shown in Fig. 3. FT-IR: vmax, cm⁻¹ (KBr): 2987 (C-H aliphatic), 2117 (C=C str), 1650 (C=O), 1518 (asym NO₂ stretch),1444 (sym NO₂ stretch), 1252 (C-O stretch); ¹H NMR (400 MHz, CDCl3, δ p.p.m.): 7.55 (*d*, 1H, J = 15.7 Hz, olefinic- β), 7.36 (d, 2H, J = 8.8 Hz, Ar-H), 7.28 (d, 2H, J = 8.6 Hz, Ar-H), 7.16 (*d*, 2H, J = 8.8 Hz, Ar-H), 7.09 (*d*, 2H, J = 8.3 Hz, Ar-H), 6.73 (d, 1H, J = 15.7 Hz, olefinic- α), 4.46 (s, 2H, $O-CH_2$), 2.79 (s, 1H, acetylene proton).

Figure 3 Reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2.

Acknowledgements

V is grateful to the DST–PURSE Project, Vignan Bhavana, UOM, for providing research facilities.

Funding information

HSY and BK are grateful to UGC, New Delhi, for the award of BSR Faculty Fellowship.

References

- Aneja, B., Arif, R., Perwez, A., Napoleon, J. V., Hassan, P., Rizvi, M. M. A., Azam, A., Rahisuddin & Abid, M. (2018). *ChemistrySelect*, 2018, 3, 2638-2645.
- Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). *Bioorg. Med. Chem. Lett.* **15**, 3177–3180.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, 03680.

- Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 0974.
- Hall, C. L., Hamilton, V., Potticary, J., Cremeens, M. E., Pridmore, N. E., Sparkes, H. A., D'ambruoso, G. D., Warren, S. D., Matsumoto, M. & Hall, S. R. (2020). Acta Cryst. E76, 1599–1604.
- Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936–o2937.
- Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J. L. (2007). J. Phys. Chem. A, 111, 1138–1145.
- Lahtchev, K. L., Batovska, D. I., Parushev, P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). *Eur. J. Med. Chem.* **43**, 2220–2228.
- Lin, Y.-M., Zhou, Y., Flavin, M. T., Zhou, L.-M., Nie, W. & Chen, F.-C. (2002). *Bioorg. Med. Chem.* 10, 2795–2802.
- Mello, M. V. P. de, Abrahim-Vieira, B. A., Domingos, T. F. S., de Jesus, J. B., de Sousa, A. C. C., Rodrigues, C. R. & Souza, A. M. T. (2018). *Eur. J. Med. Chem.* **150**, 920–929.
- Raghav, N. & Garg, S. (2014). Eur. J. Pharm. Sci. 60, 55-63.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). *Tetrahedron Lett.* 48, 8472–8474.
- Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). *Chem. Rev.* **117**, 7762–7810.

full crystallographic data

IUCrData (2022). 7, x220957 [https://doi.org/10.1107/S2414314622009579]

3-(3-Nitrophenyl)-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one

Vinaya, Yeriyur B. Basavaraju, Holalagudu A. Nagma Banu, Balakrishna Kalluraya, Hemmige S. Yathirajan, Rishik Balerao and Ray J. Butcher

Z = 2

F(000) = 320 $D_x = 1.393 \text{ Mg m}^{-3}$

 $\theta = 2.7 - 32.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Prism, yellow

 $0.33 \times 0.19 \times 0.14$ mm

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

3638 independent reflections 2700 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.089$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 10$ $l = -15 \rightarrow 15$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9976 reflections

3-(3-Nitrophenyl)-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one

Crystal data

C₁₈H₁₃NO₄ $M_r = 307.29$ Triclinic, $P\overline{1}$ a = 7.6534 (16) Å b = 8.6079 (15) Å c = 11.369 (2) Å $\alpha = 94.433$ (7)° $\beta = 97.953$ (8)° $\gamma = 97.019$ (7)° V = 732.8 (3) Å³

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min} = 0.634, \ T_{\max} = 0.729$
47166 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: mixed
$wR(F^2) = 0.137$	H atoms treated by a mixture of independent
S = 1.08	and constrained refinement
3638 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0642P)^2 + 0.1082P]$
212 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: dual	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
-	$\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The acetylenic H atom was freely refined. All remaining hydrogen atoms were placed geometrically and refined as riding atoms with their U_{iso} values 1.2 times that of their attached atoms.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.8224 (2)	-0.53179 (13)	0.40582 (11)	0.0732 (4)
O2	0.78869 (16)	-0.48667 (12)	0.22192 (10)	0.0557 (3)
03	0.38666 (16)	0.19330 (12)	0.03294 (9)	0.0557 (3)
O4	0.12863 (14)	0.82184 (10)	0.22678 (8)	0.0419 (3)
N1	0.79204 (16)	-0.44535 (13)	0.32710 (11)	0.0436 (3)
C1	0.63484 (18)	-0.05300 (15)	0.30785 (12)	0.0358 (3)
C2	0.67213 (17)	-0.20372 (14)	0.27518 (11)	0.0342 (3)
H2A	0.639784	-0.249615	0.195197	0.041*
C3	0.75705 (18)	-0.28509 (15)	0.36138 (12)	0.0362 (3)
C4	0.8101 (2)	-0.22355 (17)	0.47820 (12)	0.0446 (3)
H4A	0.868961	-0.282414	0.535011	0.054*
C5	0.7751 (2)	-0.07331 (18)	0.51018 (13)	0.0518 (4)
H5A	0.811026	-0.027252	0.589874	0.062*
C6	0.6882 (2)	0.00972 (17)	0.42650 (13)	0.0469 (4)
H6A	0.663892	0.112233	0.450078	0.056*
C7	0.54529 (18)	0.03375 (15)	0.21647 (12)	0.0378 (3)
H7A	0.524932	-0.013883	0.136707	0.045*
C8	0.49007 (19)	0.17290 (15)	0.23512 (12)	0.0402 (3)
H8A	0.505167	0.222444	0.314155	0.048*
C9	0.40553 (19)	0.25253 (15)	0.13558 (12)	0.0386 (3)
C10	0.34071 (18)	0.40617 (14)	0.16303 (11)	0.0345 (3)
C11	0.32576 (18)	0.46816 (15)	0.27815 (11)	0.0366 (3)
H11A	0.365827	0.414762	0.344742	0.044*
C12	0.25357 (19)	0.60589 (15)	0.29624 (11)	0.0382 (3)
H12A	0.242477	0.645757	0.374749	0.046*
C13	0.19719 (17)	0.68610 (14)	0.19960 (11)	0.0343 (3)
C14	0.2132 (2)	0.62771 (16)	0.08447 (12)	0.0418 (3)
H14A	0.176033	0.682647	0.018101	0.050*
C15	0.2840 (2)	0.48861 (16)	0.06802 (12)	0.0418 (3)
H15A	0.293985	0.448410	-0.010617	0.050*
C16	0.0652 (2)	0.90385 (15)	0.12751 (12)	0.0412 (3)
H16A	-0.037244	0.838377	0.076985	0.049*
H16B	0.160640	0.926181	0.078194	0.049*
C17	0.01114 (18)	1.05106 (15)	0.17380 (12)	0.0397 (3)
C18	-0.0334 (2)	1.17155 (17)	0.20482 (14)	0.0466 (4)
H18A	-0.067 (2)	1.266 (2)	0.2248 (15)	0.057 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.1189 (11)	0.0461 (6)	0.0560 (7)	0.0324 (7)	-0.0072 (7)	0.0173 (5)
O2	0.0791 (8)	0.0448 (6)	0.0449 (6)	0.0280 (5)	0.0012 (5)	-0.0014 (5)

O3	0.0887 (9)	0.0452 (6)	0.0366 (6)	0.0323 (6)	0.0041 (5)	-0.0009 (4)
O4	0.0605 (6)	0.0339 (5)	0.0339 (5)	0.0210 (4)	0.0040 (4)	0.0022 (4)
N1	0.0506 (7)	0.0363 (6)	0.0440 (7)	0.0146 (5)	-0.0018 (5)	0.0069 (5)
C1	0.0395 (7)	0.0333 (6)	0.0357 (7)	0.0103 (5)	0.0049 (5)	0.0040 (5)
C2	0.0384 (7)	0.0328 (6)	0.0316 (6)	0.0087 (5)	0.0027 (5)	0.0026 (5)
C3	0.0397 (7)	0.0333 (6)	0.0372 (7)	0.0102 (5)	0.0052 (5)	0.0063 (5)
C4	0.0535 (8)	0.0465 (8)	0.0352 (7)	0.0153 (6)	0.0012 (6)	0.0090 (6)
C5	0.0691 (10)	0.0530 (9)	0.0320 (7)	0.0183 (7)	-0.0018 (7)	-0.0026 (6)
C6	0.0633 (9)	0.0391 (7)	0.0388 (7)	0.0179 (7)	0.0032 (6)	-0.0021 (6)
C7	0.0457 (7)	0.0333 (6)	0.0353 (7)	0.0121 (5)	0.0040 (5)	0.0016 (5)
C8	0.0514 (8)	0.0340 (7)	0.0359 (7)	0.0148 (6)	0.0025 (6)	0.0014 (5)
C9	0.0484 (8)	0.0324 (6)	0.0366 (7)	0.0130 (5)	0.0061 (6)	0.0021 (5)
C10	0.0406 (7)	0.0296 (6)	0.0339 (6)	0.0096 (5)	0.0038 (5)	0.0025 (5)
C11	0.0472 (7)	0.0324 (6)	0.0317 (6)	0.0115 (5)	0.0037 (5)	0.0066 (5)
C12	0.0514 (8)	0.0343 (6)	0.0299 (6)	0.0109 (6)	0.0064 (5)	0.0014 (5)
C13	0.0396 (7)	0.0281 (6)	0.0352 (6)	0.0090 (5)	0.0033 (5)	0.0007 (5)
C14	0.0596 (9)	0.0371 (7)	0.0307 (6)	0.0188 (6)	0.0018 (6)	0.0047 (5)
C15	0.0603 (9)	0.0365 (7)	0.0305 (6)	0.0177 (6)	0.0044 (6)	0.0011 (5)
C16	0.0526 (8)	0.0343 (7)	0.0368 (7)	0.0160 (6)	-0.0016 (6)	0.0028 (5)
C17	0.0429 (7)	0.0361 (7)	0.0408 (7)	0.0107 (6)	0.0019 (6)	0.0062 (5)
C18	0.0518 (9)	0.0378 (7)	0.0527 (9)	0.0170 (6)	0.0063 (7)	0.0052 (6)

Geometric parameters (Å, °)

1.2232 (15)	C8—C9	1.4815 (18)
1.2168 (16)	C8—H8A	0.9500
1.2189 (16)	C9—C10	1.4940 (17)
1.3693 (14)	C10—C15	1.3866 (17)
1.4362 (15)	C10—C11	1.3997 (18)
1.4706 (17)	C11—C12	1.3809 (17)
1.3957 (17)	C11—H11A	0.9500
1.3996 (19)	C12—C13	1.3888 (17)
1.4680 (18)	C12—H12A	0.9500
1.3838 (17)	C13—C14	1.3924 (18)
0.9500	C14—C15	1.3835 (18)
1.3780 (19)	C14—H14A	0.9500
1.384 (2)	C15—H15A	0.9500
0.9500	C16—C17	1.4627 (18)
1.380 (2)	C16—H16A	0.9900
0.9500	C16—H16B	0.9900
0.9500	C17—C18	1.1746 (19)
1.3295 (17)	C18—H18A	0.901 (18)
0.9500		
116.23 (10)	O3—C9—C10	120.22 (12)
122.80 (12)	C8—C9—C10	118.90 (11)
118.79 (11)	C15—C10—C11	118.06 (11)
118.40 (12)	C15—C10—C9	117.85 (11)
	$\begin{array}{c} 1.2232 \ (15) \\ 1.2168 \ (16) \\ 1.2189 \ (16) \\ 1.3693 \ (14) \\ 1.4362 \ (15) \\ 1.4706 \ (17) \\ 1.3957 \ (17) \\ 1.3957 \ (17) \\ 1.3996 \ (19) \\ 1.4680 \ (18) \\ 1.3838 \ (17) \\ 0.9500 \\ 1.3780 \ (19) \\ 1.384 \ (2) \\ 0.9500 \\ 1.380 \ (2) \\ 0.9500 \\ 1.3295 \ (17) \\ 0.9500 \\ 1.3295 \ (17) \\ 0.9500 \\ 1.3295 \ (17) \\ 0.9500 \\ 1.3295 \ (17) \\ 0.9500 \\ 1.18.79 \ (11) \\ 118.40 \ (12) \end{array}$	1.2232 (15) $C8-C9$ $1.2168 (16)$ $C8-H8A$ $1.2189 (16)$ $C9-C10$ $1.3693 (14)$ $C10-C15$ $1.4362 (15)$ $C10-C11$ $1.4362 (15)$ $C10-C11$ $1.4706 (17)$ $C11C12$ $1.3957 (17)$ $C11H11A$ $1.3996 (19)$ $C12C13$ $1.4680 (18)$ $C12H12A$ $1.3838 (17)$ $C13C14$ 0.9500 $C14C15$ $1.3780 (19)$ $C14H14A$ $1.384 (2)$ $C15H15A$ 0.9500 $C16C17$ $1.380 (2)$ $C16H16B$ 0.9500 $C16H16B$ 0.9500 $C17C18$ $1.3295 (17)$ $C18H18A$ 0.9500 $C17C18$ $1.3295 (17)$ $C18H18A$ 0.9500 $C17C10$ $118.79 (11)$ $C15C10C11$ $118.40 (12)$ $C15C10C9$

C2 C1 C(110 12 (12)	C11 C10 C0	124 01 (11)
$C_2 - C_1 - C_0$	118.12 (12)		124.01 (11)
	118.90 (11)		120.89 (11)
C6-C1-C/	122.97 (12)	С12—С11—Н11А	119.6
C3—C2—C1	118.80 (12)	C10—C11—H11A	119.6
C3—C2—H2A	120.6	C11—C12—C13	119.98 (12)
C1—C2—H2A	120.6	C11—C12—H12A	120.0
C4—C3—C2	123.22 (12)	C13—C12—H12A	120.0
C4—C3—N1	118.22 (11)	O4—C13—C12	115.58 (11)
C2—C3—N1	118.56 (11)	O4—C13—C14	124.35 (11)
C3—C4—C5	117.94 (12)	C12—C13—C14	120.07 (11)
C3—C4—H4A	121.0	C15—C14—C13	119.11 (12)
C5—C4—H4A	121.0	C15—C14—H14A	120.4
C6—C5—C4	120.11 (13)	C13—C14—H14A	120.4
С6—С5—Н5А	119.9	C14—C15—C10	121.89 (12)
С4—С5—Н5А	119.9	C14—C15—H15A	119.1
C5—C6—C1	121.80 (13)	C10—C15—H15A	119.1
С5—С6—Н6А	119.1	O4—C16—C17	108.45 (11)
С1—С6—Н6А	119.1	O4—C16—H16A	110.0
C8—C7—C1	125.96 (12)	C17—C16—H16A	110.0
С8—С7—Н7А	117.0	O4—C16—H16B	110.0
C1—C7—H7A	117.0	C17—C16—H16B	110.0
C7—C8—C9	121.55 (12)	H16A—C16—H16B	108.4
С7—С8—Н8А	119.2	C18—C17—C16	176.40 (14)
С9—С8—Н8А	119.2	C17—C18—H18A	177.0 (11)
03-09-08	120.87 (12)		,
C6—C1—C2—C3	1.0 (2)	C7—C8—C9—C10	177.91 (13)
C7—C1—C2—C3	179.80 (12)	O3—C9—C10—C15	-9.4 (2)
C1—C2—C3—C4	-1.3 (2)	C8—C9—C10—C15	171.57 (13)
C1-C2-C3-N1	178.51 (11)	O3—C9—C10—C11	167.42 (14)
O2—N1—C3—C4	-161.56 (14)	C8—C9—C10—C11	-11.6 (2)
O1—N1—C3—C4	18.8 (2)	C15—C10—C11—C12	1.2 (2)
O2—N1—C3—C2	18.64 (19)	C9—C10—C11—C12	-175.62 (13)
O1—N1—C3—C2	-160.96 (13)	C10-C11-C12-C13	-1.0 (2)
C2—C3—C4—C5	0.5 (2)	C16—O4—C13—C12	-178.35 (11)
N1—C3—C4—C5	-179.33 (13)	C16—O4—C13—C14	2.0 (2)
C3—C4—C5—C6	0.6 (2)	C11—C12—C13—O4	-179.60 (12)
C4—C5—C6—C1	-0.7(3)	C11—C12—C13—C14	0.1 (2)
C2—C1—C6—C5	-0.1(2)	O4—C13—C14—C15	-179.70 (13)
C7—C1—C6—C5	-178.78 (15)	C12-C13-C14-C15	0.7 (2)
C_{2} C_{1} C_{7} C_{8}	175.05 (13)	C_{13} C_{14} C_{15} C_{10}	-0.5(2)
C6-C1-C7-C8	-6.3(2)	$C_{11} - C_{10} - C_{15} - C_{14}$	-0.4(2)
C1 - C7 - C8 - C9	178 18 (13)	C9-C10-C15-C14	176 58 (13)
C7 - C8 - C9 - C3	-11(2)	C13 - C16 - C17	-175 40 (11)
$C_1 = C_0 = C_2 = O_3$	1.1 (2)	$C_{1}J_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O$	1/3.40(11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C18—H18A····O2 ⁱ	0.901 (18)	2.519 (18)	3.3927 (18)	163.6 (15)

Symmetry code: (i) x-1, y+2, z.