

ISSN 2414-3146

Received 25 September 2022 Accepted 18 October 2022

Edited by W. Imhof, University Koblenz-Landau, Germany

Keywords: crystal structure; ferrocene; dithiole-3-thione; intermolecular contact.

CCDC reference: 2213735

Structural data: full structural data are available from iucrdata.iucr.org

4,5-Diferrocenyl-1,2-dithiole-3-thione

Jessica J. Sánchez-García, Marcos Flores-Alamo, Amairany Nuñez-Gordillo and Elena I. Klimova*

Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico. *Correspondence e-mail: eiklimova@yahoo.com.mx

The structure of 4,5-diferrocenyl-1,2-dithiole-3-thione, $[Fe_2(C_5H_5)_2(C_{13}H_8S_3)]$ or $C_{23}H_{18}Fe_2S_3$, at 130 K has monoclinic $(P2_1/c)$ symmetry. The molecule has two ferrocenyl units attached to a 1,2-dithiole-3-thione moiety. It is of interest with respect to the question if the introduction of ferrocenyl substituents into biologically active molecules offers the potential to obtain more efficacious therapeutic drugs. The crystal structure displays intermolecular contacts of the $C-H \cdots S$ and $S-\pi(C-C)$ types.

Structure description

Ferrocene is known for its stable sandwich structure. The incorporation of ferrocene into biological molecules offers the potential to develop better and more efficacious therapeutic drugs. 1,2-Dithiole-3-thiones show significant biological activity, which include, amongst others, antitumour, antioxidant, chemotherapeutic, antithrombotic and radio-protective properties (Rakitin, 2021). The 1,2-dithiole-3-thione moiety can be found in commercial drugs, such as Oltipraz (Maxuitenko *et al.*, 1998), anethole dithiolethione ADT (Chen *et al.*, 2010), S-Danshensu (Bian *et al.*, 2012) and NOSH-1 (Jia *et al.*, 2013). The synthons can be useful for many sulfur heterocycles (Konstantinova *et al.*, 2007) and their optical properties have been employed for the creation of organic electronic conductors (Yamashita *et al.*, 1998), photoconductive materials (Perepichka *et al.*, 2001) and semiconducting polymers (Hou *et al.*, 2011).

The asymmetric unit of the title compound is constituted by one molecule showing two ferrocenyl units attached to a 1,2-dithiole-3-thione ring (Fig. 1). The cyclopentadienyl (Cp) rings bonded to the same Fe atom are almost parallel, with angles of 4.06 (2) and 4.24 (2)° between the Cp planes for the ferrocenyl groups of Fe1 and Fe2, respectively. In addition, the Cp rings of each ferrocenyl moiety adopt an eclipsed conformation. The 1,2-dithiole-3-thione ring is planar, with an r.m.s. deviation of 0.0295 for the plane of the

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 70% probability level.

equation -3.79(2)x + 9.17(1)y + 10.04(1)z = 4.21(1). The angles between the 1,2-dithiole-3-thione ring and the directly bonded Cp rings (C4-C8 and C14-C18) are 33.31 (3) and 48.16 (2)°. There is an intermolecular $C-H \cdots S$ interaction $(C21-H21\cdots S3)$ of 2.88 Å, with an angle of 139°. Moreover, another intermolecular interaction of the S··· π (C–C) type between the S-S bond and an aromatic C-C bond of one of the Cp rings is observed $(S1 \cdots C6 = 3.22 \text{ Å} \text{ and } S2 \cdots C7 =$ 3.45 Å) is observed. Fig. 2 shows a projection of the crystal structure approximately along [001]. In summary, the packing of the molecules is assumed to be mainly dictated by van der Waals forces.

Figure 2

The crystal structure of the title compound along the base vector [010], showing the intermolecular contacts of the S $\cdots \pi(C-C)$ type as dotted turquoise lines.

Table 1	
Experimental details.	
Crystal data	
Chemical formula	

 $[Fe_2(C_5H_5)_2(C_{13}H_8S_3)]$ C 502.25 M_{r} Crystal system, space group Monoclinic, $P2_1/c$ Temperature (K) 130 11.0149 (12), 14.0459 (12), a, b, c (Å) 13.3983 (13) 109.205 (12) $V(Å^3)$ 1957.5 (4) Ζ Radiation type Μο Κα μ (mm⁻¹) 1.81 $0.57 \times 0.46 \times 0.11$ Crystal size (mm) Data collection Diffractometer Agilent Xcalibur Atlas Gemini Absorption correction Analytical (CrysAlis RED; Agilent, 2013) T_{\min}, T_{\max} 0.486, 0.852 No. of measured, independent and 10068, 4559, 3445 observed $[I > 2\sigma(I)]$ reflections Rint 0.039 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.692 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.039, 0.079, 1.04 No. of reflections 4559 No. of parameters 253 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.43, -0.41

Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2013), SHELXS2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).

Synthesis and crystallization

To a mixture of sodium sulfide (10 mmol) and S_8 (10 mmol) in ethanol (80 ml) was added 1,2-diferrocenylcyclopropenone (5 mmol) and the solution was stirred at 353 K for 8 h. After the solvent had been removed in vacuo, the resulting residue was purified by column chromatography with alumina using a mixture of hexane and diethyl ether (1:1 v/v). Black crystals of 4.5-diferrocenyl-1.2-dithiole-3-thione suitable for singlecrystal diffraction analysis were obtained by slow evaporation of a saturated dichloromethane/hexane (1:1 v/v) solution (yield 50%; m.p. 498-500 K).

¹H NMR (400 MHz, CDCl₃): δ 4.12 (5H, s, C₅H₅), 4.18 (5H, s, C₅H₅), 4.19 (2H, m, C₅H₄), 4.35 (2H, m, C₅H₄), 4.38 (2H, m, C₅H₄), 4.40 (2H, m, C₅H₄). ¹³C NMR (75 MHz, CDCl₃): δ 67.45 (CH C₅H₄), 69.71 (C₅H₅), 69.74 (CH C₅H₄), 70.14 (CH C₅H₄), 70.92 (C₅H₅), 71.45 (CH C₅H₄), 79.60 (C_{ipso} C₅H₄), 80.05 (C_{ipso} C₅H₄), 141.37 (=C), 169.18 (=C), 214.00 (C=S). MS: m/z 502, $[M]^+$ 40. Analysis calculated (%) for C₂₃H₁₈Fe₂S₃: C 55.02, H 3.61, S 19.15; found: C 55.10, H 3.71, S 19.22.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors thank PAPIIT–DGAPA–UNAM for financial support of this work.

Funding information

Funding for this research was provided by: PAPIIT-DGAPA-UNAM (award No. IN 217421).

References

- Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
- Bian, J., Cai, Z. & Wu, H. (2012). CN Patent 102417501 A, 1.
- Chen, P., Luo, Y., Hai, L., Qian, S. & Wu, Y. (2010). Eur. J. Med. Chem. 45, 3005–3010.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hou, Y., Long, G., Sui, D., Cai, Y., Wan, X., Yu, A. & Chen, Y. (2011). *Chem. Commun.* 47, 10401–10403.

- Jia, J., Xiao, Y., Wang, W., Qing, L., Xu, Y., Song, H., Zhen, X., Ao, G., Alkayed, N. J. & Cheng, J. (2013). *Neurochem. Int.* 62, 1072– 1078.
- Konstantinova, L. S., Berezin, A. A., Lysov, K. A. & Rakitin, O. A. (2007). *Tetrahedron Lett.* **48**, 5851–5854.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Maxuitenko, Y., Libby, A. H., Joyner, H. H., Curphey, T. J., MacMillan, D. L., Kensler, T. W. & Roebuck, B. D. (1998). *Carcinogenesis*, **19**, 1609–1615.
- Perepichka, D. F., Perepichka, I. F., Bryce, M. R., Moore, A. J. & Sokolov, N. I. (2001). *Synth. Met.* **121**, 1487–1488.
- Rakitin, O. A. (2021). Molecules, 26, 3595–3638.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Yamashita, Y., Tomura, M. & Badruz Zaman, M. (1998). Chem. Commun. pp. 1657–1658.

full crystallographic data

IUCrData (2022). 7, x221011 [https://doi.org/10.1107/S2414314622010112]

4,5-Diferrocenyl-1,2-dithiole-3-thione

Jessica J. Sánchez-García, Marcos Flores-Alamo, Amairany Nuñez-Gordillo and Elena I.

Klimova

4,5-Diferrocenyl-1,2-dithiole-3-thione

Crystal data

 $[Fe_2(C_5H_5)_2(C_{13}H_8S_3)]$ $M_r = 502.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 11.0149 (12) Å *b* = 14.0459 (12) Å *c* = 13.3983 (13) Å $\beta = 109.205 \ (12)^{\circ}$ V = 1957.5 (4) Å³ Z = 4

Data collection

Agilent Xcalibur Atlas Gemini diffractometer Graphite monochromator Detector resolution: 10.4685 pixels mm⁻¹ ω scans Absorption correction: analytical (CrvsAlis RED; Agilent, 2013) $T_{\rm min} = 0.486, T_{\rm max} = 0.852$

Refinement

Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.039$ H-atom parameters constrained $wR(F^2) = 0.079$ S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 4559 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 253 parameters $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1024 $D_{\rm x} = 1.704 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2429 reflections $\theta = 3.5 - 29.5^{\circ}$ $\mu = 1.81 \text{ mm}^{-1}$ T = 130 KPlate, black $0.57 \times 0.46 \times 0.11 \text{ mm}$

10068 measured reflections 4559 independent reflections 3445 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$ $\theta_{\text{max}} = 29.5^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ $h = -15 \rightarrow 13$ $k = -19 \rightarrow 14$ $l = -16 \rightarrow 18$

Hydrogen site location: inferred from $w = 1/[\sigma^2(F_0^2) + (0.023P)^2 + 0.8521P]$

	x	V	7.	$U_{ia}*/U_{aa}$	
$\overline{C1}$	0.4091 (3)	0 39934 (18)	0 2096 (2)	0.0128 (6)	
C^2	0.4071(3) 0.5328(3)	0.39994(18) 0.38193(18)	0.2090(2) 0.2754(2)	0.0128 (6)	
C2 C3	0.5528(5) 0.6322(3)	0.33193(18) 0.4379(2)	0.2734(2) 0.2544(2)	0.0128(0) 0.0173(6)	
C4	0.0522(3)	0.4379(2) 0.31407(10)	0.2544(2) 0.3630(2)	0.0175(0)	
C4	0.3012(2)	0.31407(19)	0.3039(2)	0.0124(0) 0.0144(6)	
05	0.0/10(3)	0.25555 (18)	0.4048 (2)	0.0144 (0)	
НЭ	0.74328	0.25155	0.380255	0.01/1	
0	0.6561 (3)	0.1977 (2)	0.4878(2)	0.0181 (6)	
H6	0./15344	0.15185/	0.528342	0.022*	
C7	0.5366 (3)	0.22197 (19)	0.5000 (2)	0.0179 (6)	
H7	0.50179	0.195138	0.549818	0.021*	
C8	0.4783 (3)	0.29337 (19)	0.4246 (2)	0.0147 (6)	
H8	0.397726	0.322723	0.415683	0.018*	
C9	0.7111 (3)	0.4770 (2)	0.5497 (2)	0.0194 (7)	
H9	0.699657	0.524867	0.497316	0.023*	
C10	0.6239 (3)	0.4545 (2)	0.6037 (2)	0.0177 (6)	
H10	0.543627	0.484821	0.593797	0.021*	
C11	0.6767 (3)	0.3790 (2)	0.6750 (2)	0.0213 (7)	
H11	0.638054	0.349734	0.72102	0.026*	
C12	0.7972 (3)	0.3551 (2)	0.6656 (2)	0.0244 (7)	
H12	0.853732	0.306978	0.704488	0.029*	
C13	0.8192 (3)	0.4150 (2)	0.5880(2)	0.0238 (7)	
H13	0.892609	0.414117	0.565643	0.029*	
C14	0.2895 (3)	0.35130 (19)	0.2068 (2)	0.0140 (6)	
C15	0.1742 (3)	0.3995 (2)	0.2065 (2)	0.0156 (6)	
H15	0.162618	0.466391	0.20834	0.019*	
C16	0.0809 (3)	0.3289 (2)	0.2032 (2)	0.0209 (7)	
H16	-0.003988	0.340458	0.203319	0.025*	
C17	0.1353 (3)	0.2384 (2)	0.1995 (2)	0.0209(7)	
H17	0.092877	0.17904	0.196154	0.025*	
C18	0.2636 (3)	0.2511 (2)	0.2016 (2)	0.0176 (6)	
H18	0.322191	0.201926	0.199956	0.021*	
C19	0.1889 (3)	0.3340 (2)	-0.0603(2)	0.0208 (7)	
H19	0.27249	0.347447	-0.062494	0.025*	
C20	0.1376 (3)	0.2426(2)	-0.0567(2)	0.0197 (7)	
H20	0.180714	0.183946	-0.055911	0.024*	
C21	0.0111 (3)	0.2533(2)	-0.0543(2)	0.0201(7)	
H21	-0.04585	0.203153	-0.051976	0.024*	
C22	-0.0160(3)	0.203133 0.3527(2)	-0.0560(2)	0.021 0.0205(7)	
H22	-0.094107	0.380448	-0.054727	0.025*	
C23	0.0941(3)	0.300440 0.4027(2)	-0.0601(2)	0.023 0.0201 (7)	
U23 Н23	0.0241 (3)	0.469885	-0.062245	0.0201 (7)	
Fe1	0.102955	0.709003	0.002245	0.027	
Fel	0.03330(4) 0.13851(4)	0.33770(3) 0.31860(2)	0.32302(3) 0.07340(3)	0.01207(11) 0.01267(11)	
1°52 S1	0.13031(4) 0.29202(7)	0.31009(3)	0.07540(5) 0.11620(6)	0.01207(11) 0.01651(16)	
51 52	0.30303(7)	0.40004 (3)	0.11039(0)	0.01031(10) 0.01045(17)	
32	0.3/333(/)	0.52384 (3)	0.13938(0)	0.01945(1/)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

<u>S3</u>	0.79134	(7) 0.	43455 (6)	0.30660 (7)	0.0298 (2)	
Atomic	Atomic displacement parameters (\hat{A}^2)					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0184 (14)	0.0122 (13)	0.0083 (13)	-0.0008 (11)	0.0049 (12)	-0.0026 (11)
C2	0.0153 (14)	0.0121 (13)	0.0112 (13)	-0.0026 (11)	0.0048 (12)	-0.0021 (11)
C3	0.0166 (14)	0.0213 (15)	0.0137 (14)	-0.0011 (12)	0.0044 (12)	-0.0015 (13)
C4	0.0112 (13)	0.0131 (13)	0.0116 (13)	-0.0025 (11)	0.0020 (11)	-0.0033 (12)
C5	0.0159 (14)	0.0118 (14)	0.0142 (14)	0.0005 (11)	0.0033 (12)	-0.0049 (12)
C6	0.0222 (16)	0.0124 (14)	0.0139 (14)	0.0024 (12)	-0.0019 (13)	-0.0014 (12)
C7	0.0227 (16)	0.0153 (14)	0.0143 (14)	-0.0074 (13)	0.0042 (13)	0.0004 (12)
C8	0.0121 (14)	0.0176 (15)	0.0123 (14)	-0.0036 (12)	0.0014 (12)	-0.0007 (12)
C9	0.0273 (16)	0.0136 (14)	0.0138 (14)	-0.0035 (13)	0.0018 (13)	-0.0043 (12)
C10	0.0209 (15)	0.0171 (15)	0.0135 (14)	0.0040 (12)	0.0033 (12)	-0.0076 (12)
C11	0.0293 (17)	0.0231 (16)	0.0090 (14)	0.0015 (14)	0.0029 (13)	-0.0036 (13)
C12	0.0226 (16)	0.0236 (17)	0.0182 (16)	0.0058 (14)	-0.0052 (13)	-0.0077 (14)
C13	0.0171 (16)	0.0279 (17)	0.0228 (16)	-0.0058 (13)	0.0016 (13)	-0.0127 (15)
C14	0.0145 (14)	0.0160 (14)	0.0083 (13)	0.0002 (12)	-0.0005 (11)	0.0012 (12)
C15	0.0150 (14)	0.0217 (15)	0.0082 (13)	-0.0019 (12)	0.0010 (12)	-0.0047 (12)
C16	0.0170 (15)	0.0377 (19)	0.0094 (13)	-0.0040 (14)	0.0061 (12)	-0.0037 (14)
C17	0.0213 (16)	0.0284 (17)	0.0104 (14)	-0.0082 (14)	0.0015 (13)	0.0049 (13)
C18	0.0206 (15)	0.0150 (15)	0.0137 (14)	-0.0014 (12)	0.0010 (12)	0.0012 (12)
C19	0.0207 (16)	0.0318 (18)	0.0088 (13)	-0.0042 (14)	0.0033 (12)	-0.0029 (13)
C20	0.0248 (16)	0.0210 (16)	0.0125 (14)	0.0025 (13)	0.0051 (13)	-0.0048 (13)
C21	0.0200 (15)	0.0247 (16)	0.0105 (14)	-0.0069 (13)	-0.0020 (12)	-0.0014 (13)
C22	0.0156 (15)	0.0280 (17)	0.0132 (14)	0.0013 (13)	-0.0016 (12)	-0.0006 (13)
C23	0.0244 (17)	0.0195 (15)	0.0112 (14)	-0.0047 (13)	-0.0011 (13)	0.0032 (13)
Fe1	0.0142 (2)	0.0121 (2)	0.0100 (2)	0.00071 (16)	0.00085 (17)	-0.00160 (16)
Fe2	0.0116 (2)	0.0164 (2)	0.00860 (19)	-0.00166 (16)	0.00152 (16)	0.00006 (17)
S1	0.0167 (4)	0.0158 (4)	0.0143 (3)	-0.0020 (3)	0.0014 (3)	0.0036 (3)
S2	0.0181 (4)	0.0207 (4)	0.0178 (4)	-0.0060 (3)	0.0035 (3)	0.0045 (3)
S3	0.0138 (4)	0.0402 (5)	0.0334 (5)	-0.0021 (4)	0.0051 (4)	0.0137 (4)

Geometric parameters (Å, °)

C1—C2	1.379 (4)	C12—H12	0.95
C1-C14	1.470 (4)	C13—Fe1	2.055 (3)
C1—S1	1.726 (3)	C13—H13	0.95
C2—C3	1.449 (4)	C14—C18	1.433 (4)
C2—C4	1.472 (4)	C14—C15	1.438 (4)
C3—S3	1.661 (3)	C14—Fe2	2.053 (3)
C3—S2	1.736 (3)	C15—C16	1.418 (4)
C4—C5	1.436 (4)	C15—Fe2	2.040 (3)
C4—C8	1.439 (4)	C15—H15	0.95
C4—Fe1	2.072 (3)	C16—C17	1.412 (4)
C5—C6	1.417 (4)	C16—Fe2	2.042 (3)
C5—Fe1	2.046 (3)	C16—H16	0.95

data reports

С5—Н5	0.95	C17—C18	1.416 (4)
C6—C7	1.420 (4)	C17—Fe2	2.041 (3)
C6—Fe1	2.028 (3)	C17—H17	0.95
С6—Н6	0.95	C18—Fe2	2.048 (3)
C7—C8	1.418 (4)	C18—H18	0.95
C7—Fe1	2.033 (3)	C19—C20	1.410 (4)
С7—Н7	0.95	C19—C23	1.422 (4)
C8—Fe1	2.045 (3)	C19—Fe2	2.053 (3)
С8—Н8	0.95	С19—Н19	0.95
C9—C10	1.415 (4)	C20—C21	1.412 (4)
C9—C13	1.428 (4)	C20—Fe2	2.041 (3)
C9—Fe1	2.051 (3)	C20—H20	0.95
С9—Н9	0.95	C_{21} — C_{22}	1.426 (4)
C10—C11	1.418 (4)	C21—Fe2	2.040(3)
C10—Fe1	2,043 (3)	C21—H21	0.95
C10—H10	0.95	C^{22} — C^{23}	1 418 (4)
C11-C12	1,415(4)	C^{22} E^{23}	2.047(3)
C11_Fel	2.043(3)	C22_H22	0.95
	0.95	$C_{22} = 1122$ $C_{23} = F_{e^2}$	2.063 (3)
C_{12} C_{13}	1 410 (5)	C23 H23	2.005 (5)
C12 = C13	1.419(3)	S1 S2	0.95
	2.030 (3)	51-52	2.0323 (10)
C2—C1—C14	128.6 (2)	C20—C21—C22	107.8 (3)
C2-C1-S1	119.1 (2)	C20—C21—Fe2	69.79 (16)
C14-C1-S1	112.35 (19)	C22—C21—Fe2	69.84 (16)
C1-C2-C3	115.4 (2)	C_{20} C_{21} H_{21}	126.1
C1-C2-C4	122.2(2)	C^{22} C^{21} H^{21}	126.1
$C_{3}-C_{2}-C_{4}$	122.2(2) 122.3(2)	Fe^2 — C^21 — H^21	125.9
$C_2 = C_3 = S_3$	122.5(2) 1315(2)	C^{23} C^{22} C^{21}	108.0(3)
$C_2 = C_3 = S_2$	131.9(2) 1139(2)	C^{23} C^{22} E^{23}	70 40 (16)
S_{3} C_{3} S_{2}	113.5(2) 114 56 (17)	$C_{21} - C_{22} - F_{e^2}$	69 32 (15)
55 - 63 - 52	1063(2)	C_{23} C_{22} H_{22}	126
$C_{5} - C_{4} - C_{2}^{2}$	100.3(2) 128 3 (3)	C_{21} C_{22} H_{22}	126
$C_{8} - C_{4} - C_{2}$	125.5(3)	E_{e^2} C_{e^2} H_{e^2}	125 8
C_{5} C_{4} E_{2}	68 61 (15)	$C_{22} = C_{22} = 1122$	125.0 107.5(3)
C_{3} C_{4} E_{2}	68 57 (15)	$C_{22} = C_{23} = C_{13}$	107.3(3)
C_{2} C_{4} E_{2}	120.04(10)	$C_{22} = C_{23} = 1 C_{2}$	69.22(17)
$C_2 = C_4 = rer$	129.04(19) 108.7 (2)	$C_{13} = C_{23} = F_{23}$	126.2
C6 C5 Ec1	100.7(3)	C_{22} $-C_{23}$ $-H_{23}$ C_{10} C_{23} H_{23}	120.2
$C_0 = C_0 = F_0 I$	00.97(10)	$C_{19} = C_{23} = H_{23}$	120.2
	10.50 (15)	Гед—С23—П23	120.7
C6-C5-H5	125.0	C_{0} FeI C_{1}	40.94 (12)
C4—C5—H5	125.6	C6—FeI—CII	120.22 (12)
rei—U3—H3	120.4	C/-FeI-CII	104.35(13)
$C_{2} = C_{2} = C_{1}$	108.3(2)	Co-FeI-CIU	156.95 (13)
C5—C6—Fel	/0.32 (16)	C/-FeI-CIO	121.46 (12)
	69.73 (16)	CII—FeI—CIU	40.62 (11)
С5—С6—Н6	125.9	C6—Fe1—C8	68.57 (11)
С7—С6—Н6	125.9	C7—Fe1—C8	40.69 (11)

Fe1—C6—H6	125.7	C11—Fe1—C8	120.94 (12)
C8-C7-C6	107.9 (3)	C10—Fe1—C8	107.83 (11)
C8—C7—Fe1	70.12 (15)	C6—Fe1—C5	40.71 (11)
C6—C7—Fe1	69.33 (16)	C7—Fe1—C5	68.62 (12)
C8—C7—H7	126.1	C_{11} E_{e1} C_{5}	15756(11)
C6-C7-H7	126.1	C10—Fe1—C5	161.08(11)
Fe1 - C7 - H7	126.1	C8—Fe1—C5	68 41 (11)
C7-C8-C4	108.9(2)	C6—Fe1—C12	105 52 (12)
C7 - C8 - Fe1	69 19 (15)	C7—Fe1—C12	105.52(12) 119.71(12)
C_{1} C_{2} C_{3} C_{4} C_{8} C_{1}	70.53 (15)	C_{11} E_{e1} C_{12}	40.44(12)
$C_7 = C_8 = H_8$	125.6	C10 Eq. $C12$	40.44(12)
$C_{1} = C_{2} = C_{1}$	125.6	C_{8} Fe1 C12	156.00(12)
$C_{+}C_{0} = 110$	125.0	$C_{0} = C_{1} = C_{12}$	130.00(13)
$\begin{array}{ccc} FeI - Co - Ho \\ CI0 & C0 & CI2 \\ \end{array}$	120.3 107.0(2)	C_{5} $-F_{e1}$ $-C_{12}$	123.14(12) 150.72(12)
$C_{10} = C_{9} = C_{13}$	107.9(3)	$C_0 = F_0 = C_9$	139.73(13)
C10 - C9 - FeI	(0.91)(10)	C_{1} FeI C_{2}	(139.11(12))
C13—C9—Fei	09.81 (10)	C10 F-1 C0	08.25 (12)
C10 - C9 - H9	126.1	C10—FeI—C9	40.44 (12)
С13—С9—Н9	126.1	C8—FeI—C9	125.06 (11)
Fe1—C9—H9	126.2	C5—FeI—C9	125.45 (12)
C9—C10—C11	108.3 (3)	C12—Fe1—C9	68.12 (12)
C9—C10—Fel	70.06 (16)	C6—Fe1—C13	122.13 (12)
C11—C10—Fe1	69.68 (16)	C7—Fe1—C13	156.59 (12)
С9—С10—Н10	125.8	C11—Fe1—C13	68.25 (13)
C11—C10—H10	125.8	C10—Fe1—C13	68.21 (12)
Fe1—C10—H10	126	C8—Fe1—C13	162.09 (12)
C12—C11—C10	107.8 (3)	C5—Fe1—C13	109.31 (12)
C12—C11—Fe1	70.04 (18)	C12—Fe1—C13	40.45 (13)
C10-C11-Fe1	69.70 (16)	C9—Fe1—C13	40.70 (12)
C12—C11—H11	126.1	C6—Fe1—C4	68.90 (11)
C10-C11-H11	126.1	C7—Fe1—C4	68.94 (11)
Fe1—C11—H11	125.8	C11—Fe1—C4	158.45 (12)
C11—C12—C13	108.4 (3)	C10—Fe1—C4	124.24 (11)
C11—C12—Fe1	69.52 (16)	C8—Fe1—C4	40.90 (11)
C13—C12—Fe1	69.96 (17)	C5—Fe1—C4	40.83 (10)
C11—C12—H12	125.8	C12—Fe1—C4	160.70 (12)
C13—C12—H12	125.8	C9—Fe1—C4	110.39 (11)
Fe1—C12—H12	126.3	C13—Fe1—C4	125.76 (12)
C12—C13—C9	107.5 (3)	C21—Fe2—C15	149.91 (12)
C12—C13—Fe1	69.59 (17)	C21—Fe2—C20	40.48 (12)
C9-C13-Fe1	69.49 (16)	C15—Fe2—C20	169.40 (12)
C12—C13—H13	126.2	C21—Fe2—C17	104.53 (12)
C9—C13—H13	126.2	C15—Fe2—C17	68.54 (12)
Fe1—C13—H13	126.3	C20—Fe2—C17	114.90 (12)
C18—C14—C15	107.5 (2)	C21—Fe2—C16	115.13 (12)
C18—C14—C1	127.9 (3)	C15—Fe2—C16	40.64 (11)
C15-C14-C1	124.6 (2)	C20 - Fe2 - C16	147.95 (12)
C18—C14—Fe2	69.38 (15)	C17—Fe2—C16	40.47 (12)
C15—C14—Fe2	68.97 (15)	C21—Fe2—C22	40.84 (11)
			···· · · · · · /

C1—C14—Fe2	126.0 (2)	C15—Fe2—C22	118.59 (12)
C16—C15—C14	107.5 (3)	C20—Fe2—C22	68.24 (12)
C16—C15—Fe2	69.75 (16)	C17—Fe2—C22	126.44 (12)
C14—C15—Fe2	69.89 (16)	C16—Fe2—C22	107.48 (12)
С16—С15—Н15	126.2	C21—Fe2—C18	125.60 (11)
C14—C15—H15	126.2	C15—Fe2—C18	68.99 (12)
Fe2—C15—H15	125.7	C20—Fe2—C18	106.65 (12)
C17—C16—C15	108.6 (3)	C17—Fe2—C18	40.51 (11)
C17—C16—Fe2	69.72 (17)	C16—Fe2—C18	68.30 (12)
C15—C16—Fe2	69.60 (16)	C22—Fe2—C18	163.99 (11)
C17—C16—H16	125.7	C21—Fe2—C14	165.36 (11)
C15—C16—H16	125.7	C15—Fe2—C14	41.13 (11)
Fe2—C16—H16	126.6	C_{20} —Fe2—C14	129 44 (12)
$C_{16} - C_{17} - C_{18}$	108.6 (3)	C17—Fe2—C14	68 42 (11)
C_{16} C_{17} F_{e2}	69 82 (17)	C16—Fe2—C14	68 46 (11)
$C18 - C17 - Fe^2$	70.02(17)	C^{22} —Fe ² —C ¹⁴	15354(11)
C_{16} $-C_{17}$ $-H_{17}$	125.7	$C18 - Fe^2 - C14$	40.92 (11)
C_{18} C_{17} H_{17}	125.7	$C_{21} = F_{e2} = C_{19}$	67.94 (12)
$E_{10} = C_{17} = H_{17}$	125.7	$C_{15} = F_{e_{1}}^{2} = C_{19}^{19}$	132 43 (12)
$C_{17} - C_{18} - C_{14}$	107.8 (3)	$C_{10} = 102 = C_{10}$	40.29(12)
$C17 - C18 - Ee^2$	69 47 (16)	$C_{17} = C_{19}$	149.68(12)
$C14$ $C18$ Fe^2	69.70 (15)	$C_{17} = 162 = C_{17}$	149.00(12) 160.72(12)
C17 - C18 - H18	126.1	$C_{10} = 102 = C_{19}$	67.94(12)
C14 $C18$ $H18$	126.1	$C_{22} = 102 = C_{10}$	118 68 (12)
$E_{14} = C_{10} = 1118$	126.1	$C_{10} = 102 = C_{10}$	110.00(12)
$C_{20} = C_{10} = C_{10}$	120.3 108.3 (3)	$C_{14} = C_{12} = C_{13}$	111.23(12)
$C_{20} = C_{19} = C_{23}$	100.3(3)	$C_{21} = F_{22} = C_{23}$	111 25 (12)
$C_{20} = C_{19} = F_{62}$	09.38(17)	$C_{13} - F_{e2} - C_{23}$	111.23(12)
$C_{23} = C_{13} = C_{23}$	125.8	C_{20} C_{20} C_{23} C_{23} C_{23}	165.02(12)
$C_{20} = C_{19} = H_{19}$	125.8	C17 - Fe2 - C23	103.92(12) 130.20(12)
$C_{23} = C_{13} = 1119$	125.6	$C_{10} = F_{e2} = C_{23}$	130.29(12)
$\Gamma_{e2} = C_{19} = H_{19}$	120.2	C_{22} Fe_{2} C_{23}	40.36(12)
C19 - C20 - C21	106.5(5) 70.22(17)	C16 - Fe2 - C23	133.47(12)
C19 - C20 - Fe2	(0.55(17))	C14 - Fe2 - C23	121.33(11)
$C_{21} = C_{20} = Fe_2$	09.75 (17)	C19—Fe2— $C23$	40.42(12)
C19 - C20 - H20	125.8	C1 = S1 = S2	93.98 (10)
C21—C20—H20	125.8	C3—52—51	97.18 (10)
Fe2—C20—H20	125.7		
$C_{14} - C_{1} - C_{2} - C_{3}$	1764(3)	Fe1-C9-C13-C12	-594(2)
$S_1 - C_1 - C_2 - C_3$	-40(3)	C10-C9-C13-Fe1	59.30(19)
$C_{14} - C_{1} - C_{2} - C_{4}$	-6.1(4)	C_{2} C_{1} C_{14} C_{18}	-51.1(4)
$S_1 = C_1 = C_2 = C_4$	1735(2)	$S_1 - C_1 - C_1 - C_1 = C_1 - C_1 = C_1 - C_1 = C_1 - C_1 - C_1 = C_1 - C_1 = C_1 - C_1 = C_1 = C_1 - C_1 = C_1 $	1293(3)
C1 - C2 - C3 - S3	-174.6(2)	C_{2} C_{1} C_{14} C_{15}	129.3(3) 130.3(3)
C4-C2-C3-S3	79(4)	$S_1 = C_1 $	-493(3)
C1 - C2 - C3 - S2	7.0 (3)	C_{2} C_{1} C_{14} E_{2}	-1419(2)
C4 - C2 - C3 - S2	-1705(2)	$S_{1} = C_{1} = C_{14} = F_{e^{2}}$	385(3)
C1 - C2 - C4 - C5	146.3 (3)	C18 - C14 - C15 - C16	10(3)
$C_1 = C_2 = C_4 = C_5$	$-36 \Lambda (\Lambda)$	$C_{1} = C_{14} = C_{15} = C_{16}$	1.0(3) 1708(2)
$0_{3} - 0_{2} - 0_{4} - 0_{3}$	50.4 (4)	C1 - C14 - C13 - C10	1/9.0 (2)

C1—C2—C4—C8	-31.3 (4)	Fe2-C14-C15-C16	59.86 (19)
C3—C2—C4—C8	146.0 (3)	C18-C14-C15-Fe2	-58.88 (19)
C1-C2-C4-Fe1	-121.3 (3)	C1-C14-C15-Fe2	120.0 (3)
C3-C2-C4-Fe1	56.0 (4)	C14—C15—C16—C17	-1.0(3)
C8—C4—C5—C6	0.1 (3)	Fe2-C15-C16-C17	59.0 (2)
C2-C4-C5-C6	-177.9 (3)	C14-C15-C16-Fe2	-59.95 (19)
Fe1—C4—C5—C6	58.56 (19)	C15—C16—C17—C18	0.6 (3)
C8—C4—C5—Fe1	-58.48 (18)	Fe2-C16-C17-C18	59.5 (2)
C2-C4-C5-Fe1	123.5 (3)	C15-C16-C17-Fe2	-58.91 (19)
C4—C5—C6—C7	0.1 (3)	C16—C17—C18—C14	0.0 (3)
Fe1—C5—C6—C7	59.64 (19)	Fe2-C17-C18-C14	59.40 (19)
C4-C5-C6-Fe1	-59.53 (18)	C16-C17-C18-Fe2	-59.4 (2)
C5—C6—C7—C8	-0.3 (3)	C15—C14—C18—C17	-0.6 (3)
Fe1—C6—C7—C8	59.76 (19)	C1-C14-C18-C17	-179.4 (3)
C5-C6-C7-Fe1	-60.01 (19)	Fe2-C14-C18-C17	-59.3 (2)
C6—C7—C8—C4	0.3 (3)	C15-C14-C18-Fe2	58.62 (19)
Fe1—C7—C8—C4	59.56 (19)	C1-C14-C18-Fe2	-120.2 (3)
C6-C7-C8-Fe1	-59.26 (19)	C23—C19—C20—C21	0.1 (3)
C5—C4—C8—C7	-0.2 (3)	Fe2-C19-C20-C21	59.6 (2)
C2—C4—C8—C7	177.8 (2)	C23—C19—C20—Fe2	-59.53 (19)
Fe1—C4—C8—C7	-58.74 (19)	C19—C20—C21—C22	-0.3 (3)
C5-C4-C8-Fe1	58.50 (17)	Fe2—C20—C21—C22	59.7 (2)
C2-C4-C8-Fe1	-123.5 (3)	C19—C20—C21—Fe2	-59.99 (19)
C13—C9—C10—C11	-0.1 (3)	C20—C21—C22—C23	0.3 (3)
Fe1-C9-C10-C11	59.39 (19)	Fe2—C21—C22—C23	60.0 (2)
C13-C9-C10-Fe1	-59.49 (19)	C20-C21-C22-Fe2	-59.7 (2)
C9—C10—C11—C12	0.3 (3)	C21—C22—C23—C19	-0.3 (3)
Fe1-C10-C11-C12	59.9 (2)	Fe2-C22-C23-C19	59.07 (19)
C9-C10-C11-Fe1	-59.62 (19)	C21—C22—C23—Fe2	-59.4 (2)
C10-C11-C12-C13	-0.4 (3)	C20-C19-C23-C22	0.1 (3)
Fe1-C11-C12-C13	59.3 (2)	Fe2—C19—C23—C22	-58.9 (2)
C10-C11-C12-Fe1	-59.69 (19)	C20-C19-C23-Fe2	59.06 (19)
C11—C12—C13—C9	0.3 (3)	C2-C1-S1-S2	-0.3 (2)
Fe1-C12-C13-C9	59.36 (19)	C14—C1—S1—S2	179.37 (19)
C11-C12-C13-Fe1	-59.1 (2)	C2—C3—S2—S1	-6.2 (2)
C10—C9—C13—C12	-0.1 (3)	S3—C3—S2—S1	175.17 (15)