

IUCrData

ISSN 2414-3146

Received 26 October 2022 Accepted 31 October 2022

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; hydroxy[tris(pentafluorophenyl)]borate anions; strong Lewis acid; frustrated Lewis pairs; amine cations.

CCDC reference: 2216677

Structural data: full structural data are available from iucrdata.iucr.org

## 2,5,8,11-Tetramethyl-2,5,8,11-tetraazadodecane-2,11-diium bis[hydroxytris(pentafluorophenyl)borate] benzene 2.5-solvate

Ray J. Butcher<sup>a</sup>\* and Andrew P. Purdy<sup>b</sup>

<sup>a</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and <sup>b</sup>Chemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA. \*Correspondence e-mail: rbutcher99@yahoo.com

The title compound of overall stoichiometry, C<sub>12</sub>H<sub>32</sub>N<sub>4</sub><sup>2+</sup>·2C<sub>18</sub>HBF<sub>15</sub>O<sup>-</sup>·-2.5C<sub>6</sub>H<sub>6</sub>, crystallizes in the triclinic space group  $P\overline{1}$  and the stoichiometry of the asymmetric unit consists of two  $[C_{12}H_{32}N_4]^{2+}$  dications, two  $[C_{18}HBF_{15}O]^{-}$ anions, and 2.5 molecules of benzene as solvate. The dications are both at half occupancy and located on a center of inversion, as is one of the benzene solvate molecules. In the two anions the O-H groups participate in different hydrogenbonding schemes. In anion A, the OH group participates in a bifurcated  $2R_2^2(6)$ scheme with F atoms on different rings of an adjacent hydroxy[tris(pentafluorophenyl)]borate moiety with an additional N-H···O hydrogen bond with a dication. For anion B, the OH group participates in a single O-H···F  $R_2^2(6)$ scheme. In addition, there are both  $O-H \cdots N$  and  $N-H \cdots O$  hydrogen bonds involving dication D and anion B in an  $R_2^2(7)$  motif. There are numerous C- $H \cdots \pi$  interactions between the dications and all the three benzene solvate molecules. For solvate 3, the  $C-H\cdots\pi$  interactions are on both sides of the benzene ring and link both dications and solvate into a linear chain in the *c*-axis direction.



#### Structure description

The title compound crystallizes in the triclinic space group  $P\overline{1}$  and the stoichiometry of the asymmetric unit consists of two half  $[C_{12}H_{32}N_4]^{2+}$  dications, two  $[C_{18}HBF_{15}O]^-$  anions, and 2.5 molecules of benzene as solvate (see Fig. 1). Both dications are located on a center of inversion, as is one of the benzene solvate molecules. Tris(pentafluorophenyl)-borane is a well-known strong Lewis acid and is used extensively to promote the





Figure 1

Diagram showing the structure of the  $[C_{12}H_{32}N_4]^{2+}$  dication (*C*) and two  $[C_{18}HBF_{15}O]^+$  anions (*A*). Only symmetry-independent atoms are labelled. Benzene solvate molecules are omitted for clarity. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

formation of highly active cationic catalysts for olefin polymerization (Chen & Marks, 2000) as well as a Lewis acid partner for making frustrated Lewis pairs (FLPs) (Berkefeld *et al.*, 2010). As a strong Lewis acid, it readily forms salts with bases such as amines. A search of the Cambridge Structural Database (CSD version 5.41, November 2019; Groom *et al.*, 2016) for structures containing amine salts of hydroxy[tris-(pentafluorophenyl)]borate gave 13 hits [DOJSAX (Peters *et* 



Figure 2

Diagram showing the structure of the  $[C_{12}H_{32}N_4]^{2+}$  dication (*D*) and two  $[C_{18}HBF_{15}O]^+$  anions (*B*). Only symmetry-independent atoms are labelled. Benzene solvate molecules are omitted for clarity. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg4, Cg7–Cg9 are the centroids of the C1B–C6B, C11S–C16S, C21S–C26S and C31S–C33S/C31S'–C31S' rings, respectively.

| $D - H \cdots A$                           | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------------|-------------|-------------------------|--------------|--------------------------------------|
| $O1A - H1A \cdots F8A$                     | 0.84        | 2.16                    | 2.731 (3)    | 125                                  |
| $O1B - H1B \cdot \cdot \cdot N1D$          | 0.84        | 2.12                    | 2.846(4)     | 144                                  |
| $N2C - H2C \cdot \cdot \cdot O1A$          | 1.05 (4)    | 1.60 (4)                | 2.632 (4)    | 169 (3)                              |
| $N2D - H2D \cdots O1B$                     | 0.80(4)     | 1.76 (4)                | 2.554 (5)    | 171 (4)                              |
| $C2C-H2CB\cdots F8A^{i}$                   | 0.99        | 2.46                    | 3.435 (5)    | 168                                  |
| $C4C-H4CA\cdots F6A^{ii}$                  | 0.99        | 2.40                    | 3.191 (5)    | 137                                  |
| $C5D-H5DC\cdots$ F14B                      | 0.98        | 2.54                    | 3.284 (5)    | 133                                  |
| $C32S - H32A \cdot \cdot \cdot F10B^{iii}$ | 0.95        | 2.52                    | 3.133 (5)    | 123                                  |
| $C14S - H14A \cdots Cg4^{iv}$              | 0.95        | 2.95                    | 3.779 (5)    | 147                                  |
| $C4D - H4DA \cdots Cg7$                    | 0.99        | 2.73                    | 3.620 (4)    | 150                                  |
| $C6C - H6CB \cdots Cg9$                    | 0.98        | 2.74                    | 3.689 (4)    | 163                                  |
| $C6C - H6CB \cdots Cg9^{v}$                | 0.98        | 2.74                    | 3.689 (4)    | 163                                  |

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) x + 1, y, z; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) -x + 2, -y + 2, -z + 1.

*al.*, 2008); GIZZIZ (Focante, Mercandelli *et al.*, 2006); ITULOA (Tao *et al.*, 2016); KERLUO (Duchateau *et al.*, 2000); MUQMUG (Drewitt *et al.*, 2002); OFAFUZ (Schneider *et al.*, 2018); OZUBUH (Kelsen *et al.*, 2011); PEGCUA (Focante, Camurati *et al.*, 2006); QIMKUS (Stibrany & Brant, 2001); RAQWAI (Saverio *et al.*, 2005); SEFDIR (Hewavitharanage *et al.*, 2005); UXIJIW, UXIJUI (Thakur *et al.*, 2016)]. However, there were no hits for the dication.

In the present structure, the metrical parameters of both the 2-[(2-{[2-(dimethylammonio)ethyl]amino]ethyl)amino]-N,N,N-trimethylethan-1-aminium dications and hydroxy-[tris(pentafluorophenyl)]borate anions are in their usual ranges. The B-O distances for the two anions are 1.484 (5) and 1.487 (5) Å, which are in the normal range observed. In the two anions, the O-H groups participate in different hydrogen-bonding schemes (Table 1). In anion A, the OH group participates in a bifurcated  $R_2^2(6)$  (Etter *et al.*, 1990) scheme with F atoms on different rings of an adjacent hydroxy[tris(pentafluorophenyl)]borate moiety with an additional N-H···O hydrogen bond with a dication (see Fig. 1). For anion B, the OH group participates in a single O-H···F  $R_2^2(6)$  scheme (see Fig. 2). In addition, there are both O-



Figure 3

Diagram showing the numerous  $C-H\cdots\pi$  interactions between the  $[C_{12}H_{32}N_4]^{2+}$  dications and all the three benzene solvate molecules, also including the  $[C_{18}HBF_{15}O]^-$  anions.



Figure 4

Diagram showing how the  $C-H\cdots\pi$  interactions between the third benzene solvate molecule and cation *C*.

 $H \cdots N$  and  $N - H \cdots O$  hydrogen bonds involving cation *D* and anion *B* in a  $R_2^2(7)$  motif.

While this structure contains numerous phenyl rings, there does not appear to be any  $\pi$ - $\pi$  stacking. The closest is for the ring C7A-C12A with itself (symmetry code 1 - x, 2 - y, -z) where the CgI\_Perp distance is 2.8921 (15) Å but the slippage is 4.685 Å so there appears to be no stacking. However, there are numerous C-H··· $\pi$  interactions between the cations and all the three benzene solvate molecules (see Fig. 3). For solvate 3, the C-H··· $\pi$  interactions are on both sides of the benzene ring and link both cation and solvate into a linear chain in the *c*-axis direction (see Fig. 4). The packing is shown in Fig. 5.

#### Synthesis and crystallization

In a reaction bulb, hexamethyltriethylenetetramine (0.050 g, 0.22 mmol) was mixed with tris(pentafluorophenyl)borane (0.44 g, 0.86 mmol) in ~10 mL dry toluene in an argon-filled drybox. A yellowish brown mixture with two liquid phases resulted. On a vacuum line, the mixture was frozen and 1.72 mmol CO<sub>2</sub> was condensed in. After a day, solids began to form and the reaction was continued for several weeks. Some of the solids were flame sealed in an NMR tube with C<sub>6</sub>D<sub>6</sub>, but



Figure 5 Packing diagram of the title compound.

 Table 2

 Experimental details.

| Crystal data                                                                 |                                                                              |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Chemical formula                                                             | $C_{12}H_{32}N_4^{2+} \cdot 2C_{18}HBF_{15}O^{-} \cdot 2.5C_6H_6$            |
| $M_{\rm r}$                                                                  | 1485.68                                                                      |
| Crystal system, space group                                                  | Triclinic, $P\overline{1}$                                                   |
| Temperature (K)                                                              | 100                                                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                           | 10.4436 (5), 17.3961 (9),<br>17.8229 (9)                                     |
| $\alpha, \beta, \gamma$ (°)                                                  | 79.729 (3), 77.923 (3), 83.103 (3)                                           |
| $V(\dot{A}^3)$                                                               | 3104.1 (3)                                                                   |
| Z                                                                            | 2                                                                            |
| Radiation type                                                               | Μο Κα                                                                        |
| $\mu \text{ (mm}^{-1})$                                                      | 0.16                                                                         |
| Crystal size (mm)                                                            | $0.28 \times 0.10 \times 0.08$                                               |
| Data collection                                                              |                                                                              |
| Diffractometer                                                               | Bruker APEXII CCD                                                            |
| Absorption correction                                                        | Multi-scan ( <i>SADABS</i> ; Bruker, 2016)                                   |
| $T_{\min}, T_{\max}$                                                         | 0.591, 0.746                                                                 |
| No. of measured, independent and<br>observed $[I > 2\sigma(I)]$ reflections  | 29409, 11027, 6339                                                           |
| R <sub>int</sub>                                                             | 0.097                                                                        |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                         | 0.600                                                                        |
| Refinement                                                                   |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.061, 0.132, 1.00                                                           |
| No. of reflections                                                           | 11027                                                                        |
| No. of parameters                                                            | 922                                                                          |
| H-atom treatment                                                             | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.30, -0.39                                                                  |

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*) and *SHELXTL* (Sheldrick 2008).

it was not soluble enough to obtain a spectrum. When the NMR tube was opened, crystals of the title compound were isolated. The oxygen atom must have come from the  $CO_2$  and the proton must have come from either the toluene or the amine.

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### Acknowledgements

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

#### **Funding information**

Funding for this research was provided by: The Office of Naval Research.

#### References

Berkefeld, A., Piers, W. E. & Parvez, M. (2010). J. Am. Chem. Soc. 132, 10660–10661.

Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, E. Y. X. & Marks, T. J. (2000). Chem. Rev. 100, 1391-1434.

- Di Saverio, A., Focante, F., Camurati, I., Resconi, L., Beringhelli, T., D'Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. & Sironi, A. (2005). *Inorg. Chem.* 44, 5030–5041.
- Drewitt, M. J., Niedermann, M. & Baird, M. C. (2002). *Inorg. Chim.* Acta, **340**, 207–210.
- Duchateau, R., van Santen, R. A. & Yap, G. P. A. (2000). Organometallics, **19**, 809–816.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Focante, F., Camurati, I., Resconi, L., Guidotti, S., Beringhelli, T., D'Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. & Sironi, A. (2006). *Inorg. Chem.* 45, 1683–1692.
- Focante, F., Mercandelli, P., Sironi, A. & Resconi, L. (2006). Coord. Chem. Rev. 250, 170–188.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Hewavitharanage, P., Danilov, E. O. & Neckers, D. C. (2005). J. Org. Chem. 70, 10653–10659.
- Kelsen, V., Vallée, C., Jeanneau, E., Bibal, C., Santini, C. C., Chauvin, Y. & Olivier-Bourbigou, H. (2011). Organometallics, 30, 4284–4291.
- Peters, A., Wild, U., Hübner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821.
- Schneider, C., LaFortune, J. H. W., Melen, R. L. & Stephan, D. W. (2018). *Dalton Trans.* 47, 12742–12749.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stibrany, R. T. & Brant, P. (2001). Acta Cryst. C57, 644-645.
- Tao, X., Kehr, G., Wang, X., Daniliuc, C. G., Grimme, S. & Erker, G. (2016). Chem. Eur. J. 22, 9504–9507.
- Thakur, A., Vardhanapu, P. K., Vijaykumar, G. & Bhatta, S. R. (2016). J. Chem. Sci. **128**, 613–620.

# full crystallographic data

## *IUCrData* (2022). 7, x221049 [https://doi.org/10.1107/S2414314622010495]

# 2,5,8,11-Tetramethyl-2,5,8,11-tetraazadodecane-2,11-diium bis[hydroxytris-(pentafluorophenyl)borate] benzene 2.5-solvate

## Ray J. Butcher and Andrew P. Purdy

2,5,8,11-Tetramethyl-2,5,8,11-tetraazadodecane-2,11-diium bis[hydroxytris(pentafluorophenyl)borate] benzene 2.5-solvate

Z = 2

F(000) = 1502 $D_x = 1.590 \text{ Mg m}^{-3}$ 

 $\theta = 2.8 - 28.3^{\circ}$   $\mu = 0.16 \text{ mm}^{-1}$ T = 100 K

Needle, colourless  $0.28 \times 0.10 \times 0.08 \text{ mm}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 5245 reflections

### Crystal data

| $C_{12}H_{32}N_4{}^{2+}\!\cdot\!2C_{18}HBF_{15}O^-\!\cdot\!2.5C_6H_6$ |
|-----------------------------------------------------------------------|
| $M_r = 1485.68$                                                       |
| Triclinic, $P\overline{1}$                                            |
| a = 10.4436 (5) Å                                                     |
| <i>b</i> = 17.3961 (9) Å                                              |
| c = 17.8229 (9) Å                                                     |
| $\alpha = 79.729 \ (3)^{\circ}$                                       |
| $\beta = 77.923 (3)^{\circ}$                                          |
| $\gamma = 83.103 \ (3)^{\circ}$                                       |
| V = 3104.1 (3) Å <sup>3</sup>                                         |
|                                                                       |

#### Data collection

| Bruker APEXII CCD<br>diffractometer    | 11027 independent reflections<br>6339 reflections with $I > 2\sigma(I)$ |
|----------------------------------------|-------------------------------------------------------------------------|
| $\varphi$ and $\omega$ scans           | $R_{\rm int} = 0.097$                                                   |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 25.3^{\circ},  \theta_{\rm min} = 2.5^{\circ}$      |
| (SADABS; Bruker, 2016)                 | $h = -12 \rightarrow 12$                                                |
| $T_{\min} = 0.591, \ T_{\max} = 0.746$ | $k = -20 \longrightarrow 20$                                            |
| 29409 measured reflections             | $l = -21 \rightarrow 21$                                                |

## Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                         |
|---------------------------------|-------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent           |
| $R[F^2 > 2\sigma(F^2)] = 0.061$ | and constrained refinement                            |
| $wR(F^2) = 0.132$               | $w = 1/[\sigma^2(F_o^2) + (0.0515P)^2]$               |
| S = 1.00                        | where $P = (F_0^2 + 2F_c^2)/3$                        |
| 11027 reflections               | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
| 922 parameters                  | $\Delta  ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$ |
| 0 restraints                    | $\Delta  ho_{\min} = -0.39 \text{ e} \text{ Å}^{-3}$  |
|                                 |                                                       |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. The structure was solved using SHELXT (Sheldrick, 2015*a*) and refined with *SHELXL2018/3* (Sheldrick, 2015*b*). All hydrogen atoms were located in difference Fourier maps and the coordinates of those attached to N were refined with  $U_{iso}(H) = 1.2U_{eq}(N)$ . For H atoms bonded to O the H—O—B—C torsion angles were refined with  $U_{iso}(H) = 1.2U_{eq}(O)$ . Those attached to carbons were refined in idealized geometry using a riding model with with atomic displacement parameters of  $U_{iso}(H) = 1.2U_{eq}(C)$  [for CH<sub>3</sub>,  $1.5U_{eq}(C)$ ] with C—H distances of 0.95 to 0.99 Å

|      | x          | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|------------|--------------|---------------|-----------------------------|
| F2A  | 0.7105 (2) | 1.11156 (12) | 0.17203 (14)  | 0.0324 (6)                  |
| F2B  | 0.5387 (2) | 0.62060 (14) | 0.75957 (12)  | 0.0414 (7)                  |
| F3A  | 0.5993 (2) | 1.25327 (12) | 0.13367 (13)  | 0.0291 (5)                  |
| F3B  | 0.5888 (3) | 0.76050 (14) | 0.67718 (13)  | 0.0449 (7)                  |
| F4A  | 0.3319 (2) | 1.28043 (12) | 0.15297 (13)  | 0.0330 (6)                  |
| F4B  | 0.7778 (2) | 0.77305 (13) | 0.54644 (14)  | 0.0405 (6)                  |
| F5A  | 0.1813 (2) | 1.15904 (12) | 0.21360 (14)  | 0.0357 (6)                  |
| F5B  | 0.9170 (3) | 0.64057 (14) | 0.50088 (15)  | 0.0538 (8)                  |
| F6A  | 0.2911 (2) | 1.01481 (11) | 0.25229 (12)  | 0.0244 (5)                  |
| F6B  | 0.8696 (2) | 0.50149 (13) | 0.58037 (14)  | 0.0438 (7)                  |
| F8A  | 0.6442 (2) | 0.97021 (12) | 0.05773 (11)  | 0.0238 (5)                  |
| F8B  | 0.5578 (2) | 0.35383 (13) | 0.63917 (13)  | 0.0316 (6)                  |
| F9A  | 0.5476 (2) | 0.89899 (13) | -0.03480 (11) | 0.0318 (6)                  |
| F9B  | 0.7125 (2) | 0.24269 (12) | 0.57213 (12)  | 0.0341 (6)                  |
| F10A | 0.3411 (2) | 0.80871 (13) | 0.02350 (13)  | 0.0384 (6)                  |
| F10B | 0.9676 (2) | 0.21649 (12) | 0.58371 (14)  | 0.0379 (6)                  |
| F11A | 0.2427 (2) | 0.78790 (13) | 0.17925 (13)  | 0.0386 (6)                  |
| F11B | 1.0673 (2) | 0.30024 (14) | 0.67035 (14)  | 0.0388 (6)                  |
| F12A | 0.3429 (2) | 0.85375 (12) | 0.27384 (12)  | 0.0269 (5)                  |
| F12B | 0.9160 (2) | 0.41616 (13) | 0.73518 (13)  | 0.0320 (6)                  |
| F14A | 0.6558 (2) | 0.80080 (12) | 0.27730 (11)  | 0.0247 (5)                  |
| F14B | 0.4976 (2) | 0.35871 (13) | 0.84276 (13)  | 0.0350 (6)                  |
| F15A | 0.6257 (2) | 0.72352 (12) | 0.42236 (12)  | 0.0291 (5)                  |
| F15B | 0.4775 (2) | 0.33929 (14) | 0.99533 (13)  | 0.0403 (6)                  |
| F16A | 0.4870 (2) | 0.79401 (13) | 0.54272 (12)  | 0.0317 (6)                  |
| F16B | 0.6233 (3) | 0.42111 (14) | 1.05999 (12)  | 0.0425 (7)                  |
| F17A | 0.3939 (2) | 0.94697 (13) | 0.51587 (11)  | 0.0292 (6)                  |
| F17B | 0.7857 (3) | 0.52384 (13) | 0.96620 (13)  | 0.0431 (7)                  |
| F18A | 0.4322 (2) | 1.02808 (12) | 0.37335 (11)  | 0.0249 (5)                  |
| F18B | 0.8016 (2) | 0.54823 (13) | 0.81312 (12)  | 0.0324 (6)                  |
| O1A  | 0.7149 (2) | 0.95384 (14) | 0.19924 (13)  | 0.0177 (6)                  |
| H1A  | 0.735166   | 0.978692     | 0.154103      | 0.021*                      |
| O1B  | 0.5064 (3) | 0.4770 (2)   | 0.71571 (16)  | 0.0441 (8)                  |
| H1B  | 0.502930   | 0.486210     | 0.668244      | 0.053*                      |
| N1C  | 0.9782 (3) | 1.03371 (19) | 0.09770 (17)  | 0.0252 (8)                  |
| N1D  | 0.3776 (3) | 0.52751 (17) | 0.58736 (17)  | 0.0222 (8)                  |
| N2C  | 0.8851 (3) | 0.98584 (18) | 0.27692 (19)  | 0.0236 (8)                  |
| H2C  | 0.821 (4)  | 0.979 (2)    | 0.241 (2)     | 0.028*                      |
| N2D  | 0.2596 (3) | 0.4640 (2)   | 0.7571 (2)    | 0.0286 (9)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H2D  | 0.335 (4)  | 0.473 (2)  | 0.745 (2)    | 0.034*      |
|------|------------|------------|--------------|-------------|
| C1A  | 0.5071 (4) | 1.0538 (2) | 0.21085 (19) | 0.0161 (8)  |
| C1B  | 0.7007 (4) | 0.5520(2)  | 0.6760 (2)   | 0.0211 (9)  |
| C1C  | 0.9686 (5) | 1.1192 (2) | 0.0720 (2)   | 0.0424 (12) |
| H1CA | 0.914079   | 1.132322   | 0.032137     | 0.064*      |
| H1CB | 0.928582   | 1.145717   | 0.116399     | 0.064*      |
| H1CC | 1.056664   | 1.136272   | 0.050297     | 0.064*      |
| C1D  | 0.3899 (4) | 0.6127 (2) | 0.5776 (2)   | 0.0285 (10) |
| H1DA | 0.356395   | 0.631234   | 0.627421     | 0.043*      |
| H1DB | 0.482598   | 0.622785   | 0.559864     | 0.043*      |
| H1DC | 0.339031   | 0.640405   | 0.539067     | 0.043*      |
| C2A  | 0.5773 (4) | 1.1184 (2) | 0.1820 (2)   | 0.0190 (9)  |
| C2B  | 0.6337 (4) | 0.6222 (3) | 0.6959 (2)   | 0.0286 (10) |
| C2C  | 1.0396 (4) | 0.9929 (3) | 0.0316 (2)   | 0.0310 (10) |
| H2CA | 1.050134   | 0.935836   | 0.050561     | 0.037*      |
| H2CB | 1.128212   | 1.010768   | 0.009930     | 0.037*      |
| C2D  | 0.4266 (3) | 0.4965 (2) | 0.5142 (2)   | 0.0216 (9)  |
| H2DA | 0.378658   | 0.525592   | 0.473974     | 0.026*      |
| H2DB | 0.409050   | 0.440680   | 0.521906     | 0.026*      |
| C3A  | 0.5223 (4) | 1.1940 (2) | 0.1618 (2)   | 0.0201 (9)  |
| C3B  | 0.6588 (4) | 0.6955 (2) | 0.6541 (2)   | 0.0292 (10) |
| C3C  | 1.0591 (4) | 1.0147 (3) | 0.1568 (2)   | 0.0389 (12) |
| H3CA | 1.140205   | 1.042282   | 0.138414     | 0.047*      |
| H3CB | 1.085336   | 0.957650   | 0.163651     | 0.047*      |
| C3D  | 0.2396 (4) | 0.5108 (2) | 0.6169 (2)   | 0.0298 (10) |
| H3DA | 0.229914   | 0.456406   | 0.611045     | 0.036*      |
| H3DB | 0.183639   | 0.546404   | 0.584778     | 0.036*      |
| C4A  | 0.3897 (4) | 1.2077 (2) | 0.1709 (2)   | 0.0209 (9)  |
| C4B  | 0.7529 (4) | 0.7022 (2) | 0.5885 (2)   | 0.0283 (10) |
| C4C  | 0.9902 (4) | 1.0370 (3) | 0.2352 (2)   | 0.0292 (10) |
| H4CA | 1.056339   | 1.034358   | 0.268293     | 0.035*      |
| H4CB | 0.951338   | 1.091878   | 0.227026     | 0.035*      |
| C4D  | 0.1909 (4) | 0.5203 (2) | 0.7008 (2)   | 0.0272 (10) |
| H4DA | 0.201919   | 0.574466   | 0.706740     | 0.033*      |
| H4DB | 0.095728   | 0.513150   | 0.714618     | 0.033*      |
| C5A  | 0.3139 (4) | 1.1462 (2) | 0.2016 (2)   | 0.0195 (9)  |
| C5B  | 0.8222 (4) | 0.6353 (2) | 0.5657 (2)   | 0.0329 (11) |
| C5C  | 0.9390 (5) | 0.9046 (3) | 0.3016 (3)   | 0.0479 (13) |
| H5CA | 0.974656   | 0.879499   | 0.255631     | 0.072*      |
| H5CB | 0.868891   | 0.874795   | 0.335160     | 0.072*      |
| H5CC | 1.009091   | 0.905802   | 0.330194     | 0.072*      |
| C5D  | 0.2446 (4) | 0.3805 (2) | 0.7559 (3)   | 0.0389 (12) |
| H5DA | 0.282930   | 0.367635   | 0.704079     | 0.058*      |
| H5DB | 0.151083   | 0.371605   | 0.768439     | 0.058*      |
| H5DC | 0.289957   | 0.347029   | 0.794372     | 0.058*      |
| C6A  | 0.3731 (4) | 1.0723 (2) | 0.2208 (2)   | 0.0175 (8)  |
| C6B  | 0.7953 (4) | 0.5634 (2) | 0.6091 (2)   | 0.0270 (10) |
| C6C  | 0.8078 (4) | 1.0198 (3) | 0.3449 (2)   | 0.0362 (11) |
|      |            |            |              |             |

| H6CA         | 0.766412               | 1.071544               | 0.327195               | 0.054*                   |
|--------------|------------------------|------------------------|------------------------|--------------------------|
| H6CB         | 0.866289               | 1.024951               | 0.379852               | 0.054*                   |
| H6CC         | 0.739774               | 0.985228               | 0.372679               | 0.054*                   |
| C6D          | 0.2130 (5)             | 0.4841 (3)             | 0.8370 (3)             | 0.0516 (14)              |
| H6DA         | 0.237918               | 0.536374               | 0.838303               | 0.077*                   |
| H6DB         | 0.253322               | 0.445397               | 0.874215               | 0.077*                   |
| H6DC         | 0.117127               | 0.483852               | 0.850991               | 0.077*                   |
| C7A          | 0.5026 (3)             | 0.9146 (2)             | 0.17160 (19)           | 0.0144 (8)               |
| C7B          | 0.7300 (4)             | 0.3920 (2)             | 0.6903 (2)             | 0.0185 (9)               |
| C8A          | 0.5459 (4)             | 0.9237(2)              | 0.0917 (2)             | 0.0178 (9)               |
| C8B          | 0.6841 (4)             | 0.3441(2)              | 0.6493(2)              | 0.0226 (9)               |
| C9A          | 0.4964 (4)             | 0.8883(2)              | 0.0418(2)              | 0.0218(9)                |
| C9B          | 0 7614 (4)             | 0.2858(2)              | 0.6137(2)              | 0.0256(10)               |
| C10A         | 0.3933(4)              | 0.8429(2)              | 0.0713(2)              | 0.0240 (9)               |
| C10B         | 0.8899(4)              | 0.2720(2)              | 0.6713(2)              | 0.0210(9)                |
| C11A         | 0.3446(4)              | 0.2720(2)<br>0.8325(2) | 0.0202(2)<br>0.1497(2) | 0.0233(9)                |
| C11B         | 0.9399(4)              | 0.3145(2)              | 0.6636(2)              | 0.0255(9)                |
| CIIS         | 0.9393(1)<br>0.2153(5) | 0.5115(2)<br>0.7509(2) | 0.0030(2)<br>0.7240(3) | 0.0200(10)<br>0.0428(13) |
| H11A         | 0.297417               | 0.769195               | 0.723967               | 0.051*                   |
| C12A         | 0.3994(4)              | 0.769193<br>0.8671 (2) | 0.123907<br>0.1976(2)  | 0.0198 (9)               |
| C12R         | 0.8586(4)              | 0.3721(2)              | 0.1970(2)<br>0.6971(2) | 0.0190(9)                |
| C12B         | 0.0500(1)<br>0.1699(4) | 0.3721(2)<br>0.7591(2) | 0.6573(3)              | 0.0221(9)<br>0.0378(11)  |
| H12A         | 0.219079               | 0.784327               | 0.608214               | 0.045*                   |
| C13A         | 0.5449(3)              | 0.9188(2)              | 0.3166(2)              | 0.0157(8)                |
| C13B         | 0.5449(3)<br>0.6458(4) | 0.9100(2)<br>0.4561(2) | 0.3100(2)<br>0.8193(2) | 0.0137(0)                |
| C135         | 0.0438(4)<br>0.0512(4) | 0.4301(2)<br>0.7299(2) | 0.6199(2)              | 0.0213(0)                |
| H13A         | 0.019426               | 0.723348               | 0.609073               | 0.045*                   |
| C14A         | 0.5924(4)              | 0.734340<br>0.8407(2)  | 0.3351(2)              | 0.045<br>0.0176 (8)      |
| C14R         | 0.5924(4)<br>0.5693(4) | 0.0407(2)<br>0.4032(2) | 0.3331(2)<br>0.8704(2) | 0.0170(0)                |
| C14B         | -0.0198(4)             | 0.4032(2)<br>0.6948(2) | 0.3704(2)<br>0.7243(3) | 0.0238(9)<br>0.0337(11)  |
| H14A         | -0.100896              | 0.675021               | 0.7245 (5)             | 0.0357 (11)              |
| C15A         | 0.100390               | 0.075021<br>0.7004(2)  | 0.724013               | 0.040                    |
| C15R         | 0.5772(4)              | 0.7994(2)<br>0.3008(2) | 0.4091(2)              | 0.0199(9)                |
| C15B         | 0.3390(4)              | 0.3908(2)              | 0.9500(2)<br>0.7025(3) | 0.0271(10)<br>0.0380(11) |
| U15A         | -0.0233(4)             | 0.0878 (2)             | 0.7923 (3)             | 0.0380 (11)              |
| C16A         | 0.023930               | 0.003223<br>0.8245(2)  | 0.837833               | $0.040^{\circ}$          |
| C16A         | 0.5090(4)              | 0.8343(2)<br>0.4218(2) | 0.4701(2)              | 0.0212(9)                |
|              | 0.0309(4)              | 0.4318(2)<br>0.716(2)  | 0.9827(2)              | 0.0279(10)               |
|              | 0.1428(3)<br>0.172405  | 0.7100(3)              | 0.7920(3)              | 0.0420(12)               |
| П10А<br>С17А | 0.1/3493               | 0.712087               | 0.859190               | $0.031^{\circ}$          |
| C17A         | 0.4607 (4)             | 0.9114(2)              | 0.4301(2)              | 0.0198(9)                |
|              | 0.7123(4)              | 0.4842 (2)             | 0.9345(2)              | 0.02/3(10)               |
| CI8A         | 0.4806 (4)             | 0.9515 (2)             | 0.3808 (2)             | 0.0180 (9)               |
|              | 0.7181(4)              | 0.4955 (2)             | 0.8550(2)              | 0.0238 (9)               |
| 0215         | 0.9916 (5)             | 0.0/12(3)              | 0.0254 (3)             | 0.0466 (13)              |
| H2IA         | 1.043861               | 0.633966               | -0.003693              | 0.026*                   |
| 0228         | 1.0436 (5)             | 0.7020(3)              | 0.0769 (3)             | 0.0436 (12)              |
| H22A         | 1.130774               | 0.685267               | 0.084246               | 0.052*                   |
| C238         | 0.9694 (5)             | 0.7570(2)              | 0.1179 (2)             | 0.0357 (11)              |

| H23A | 1.005813   | 0.779091   | 0.152968   | 0.043*      |
|------|------------|------------|------------|-------------|
| C24S | 0.8423 (5) | 0.7803 (2) | 0.1083 (2) | 0.0350 (11) |
| H24A | 0.791058   | 0.818470   | 0.136606   | 0.042*      |
| C25S | 0.7897 (4) | 0.7483 (2) | 0.0575 (3) | 0.0364 (11) |
| H25A | 0.701581   | 0.763818   | 0.051432   | 0.044*      |
| C26S | 0.8645 (5) | 0.6936 (3) | 0.0153 (3) | 0.0399 (12) |
| H26A | 0.828636   | 0.671768   | -0.020117  | 0.048*      |
| C31S | 1.1011 (4) | 1.0345 (3) | 0.4477 (2) | 0.0347 (11) |
| H31A | 1.171195   | 1.058454   | 0.411630   | 0.042*      |
| C32S | 1.0012 (5) | 1.0798 (2) | 0.4862 (3) | 0.0359 (11) |
| H32A | 1.001603   | 1.135257   | 0.476554   | 0.043*      |
| C33S | 0.9005 (4) | 1.0453 (3) | 0.5385 (2) | 0.0338 (11) |
| H33A | 0.831688   | 1.076925   | 0.565297   | 0.041*      |
| B1A  | 0.5700 (4) | 0.9616 (2) | 0.2250 (2) | 0.0164 (10) |
| B1B  | 0.6459 (4) | 0.4690 (3) | 0.7248 (3) | 0.0215 (10) |
|      |            |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| F2A  | 0.0216 (14) | 0.0231 (13) | 0.0543 (16) | -0.0061 (10) | -0.0116 (12) | -0.0030 (12) |
| F2B  | 0.0527 (17) | 0.0439 (16) | 0.0188 (12) | 0.0177 (13)  | 0.0006 (12)  | -0.0050 (12) |
| F3A  | 0.0334 (14) | 0.0165 (12) | 0.0396 (14) | -0.0089 (10) | -0.0093 (11) | -0.0031 (11) |
| F3B  | 0.072 (2)   | 0.0369 (15) | 0.0274 (13) | 0.0209 (14)  | -0.0196 (13) | -0.0149 (12) |
| F4A  | 0.0381 (15) | 0.0153 (12) | 0.0440 (15) | 0.0055 (11)  | -0.0093 (12) | -0.0040 (11) |
| F4B  | 0.0545 (18) | 0.0217 (13) | 0.0486 (16) | -0.0116 (12) | -0.0171 (13) | -0.0006 (12) |
| F5A  | 0.0229 (14) | 0.0249 (13) | 0.0584 (16) | 0.0036 (11)  | -0.0071 (12) | -0.0086 (12) |
| F5B  | 0.0494 (18) | 0.0358 (16) | 0.0578 (18) | -0.0131 (13) | 0.0263 (15)  | 0.0042 (14)  |
| F6A  | 0.0201 (13) | 0.0188 (12) | 0.0334 (13) | -0.0060 (10) | -0.0008 (10) | -0.0042 (10) |
| F6B  | 0.0478 (17) | 0.0227 (13) | 0.0479 (16) | -0.0039 (12) | 0.0210 (13)  | -0.0056 (12) |
| F8A  | 0.0242 (13) | 0.0330 (13) | 0.0142 (11) | -0.0096 (10) | -0.0012 (9)  | -0.0022 (10) |
| F8B  | 0.0308 (15) | 0.0355 (14) | 0.0360 (14) | -0.0142 (11) | -0.0152 (11) | -0.0071 (11) |
| F9A  | 0.0380 (15) | 0.0448 (15) | 0.0152 (11) | 0.0000 (12)  | -0.0059 (10) | -0.0128 (11) |
| F9B  | 0.0516 (17) | 0.0271 (13) | 0.0321 (13) | -0.0177 (12) | -0.0145 (12) | -0.0106 (11) |
| F10A | 0.0533 (17) | 0.0383 (15) | 0.0359 (14) | -0.0112 (12) | -0.0227 (13) | -0.0170 (12) |
| F10B | 0.0492 (17) | 0.0233 (13) | 0.0425 (15) | -0.0007 (12) | -0.0052 (13) | -0.0142 (12) |
| F11A | 0.0491 (17) | 0.0366 (14) | 0.0382 (14) | -0.0311 (13) | -0.0164 (12) | 0.0000 (12)  |
| F11B | 0.0276 (15) | 0.0470 (16) | 0.0452 (15) | 0.0021 (12)  | -0.0094 (12) | -0.0173 (13) |
| F12A | 0.0315 (14) | 0.0309 (13) | 0.0205 (12) | -0.0192 (11) | -0.0040 (10) | 0.0003 (10)  |
| F12B | 0.0241 (14) | 0.0440 (15) | 0.0365 (13) | -0.0115 (11) | -0.0081 (11) | -0.0207 (12) |
| F14A | 0.0344 (14) | 0.0200 (12) | 0.0193 (11) | 0.0006 (10)  | -0.0021 (10) | -0.0078 (10) |
| F14B | 0.0359 (15) | 0.0414 (15) | 0.0305 (13) | -0.0208 (12) | -0.0063 (11) | -0.0014 (12) |
| F15A | 0.0407 (15) | 0.0198 (13) | 0.0279 (12) | -0.0043 (11) | -0.0140 (11) | 0.0035 (10)  |
| F15B | 0.0389 (16) | 0.0458 (16) | 0.0302 (13) | -0.0126 (13) | 0.0021 (12)  | 0.0057 (12)  |
| F16A | 0.0360 (15) | 0.0407 (14) | 0.0183 (12) | -0.0123 (12) | -0.0083 (10) | 0.0050 (11)  |
| F16B | 0.0685 (19) | 0.0398 (15) | 0.0178 (12) | 0.0000 (13)  | -0.0095 (12) | -0.0029 (11) |
| F17A | 0.0310 (14) | 0.0430 (14) | 0.0147 (11) | -0.0028 (11) | -0.0025 (10) | -0.0098 (11) |
| F17B | 0.073 (2)   | 0.0325 (14) | 0.0346 (14) | -0.0135 (13) | -0.0267 (14) | -0.0077 (12) |
| F18A | 0.0327 (14) | 0.0239 (13) | 0.0183 (11) | 0.0040 (10)  | -0.0062 (10) | -0.0065 (10) |

| F18B | 0.0429 (16) | 0.0320 (14) | 0.0271 (12) | -0.0199 (12) | -0.0102 (11) | -0.0021 (11) |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| O1A  | 0.0194 (15) | 0.0213 (15) | 0.0120 (13) | -0.0067 (11) | -0.0021 (11) | 0.0006 (11)  |
| O1B  | 0.044 (2)   | 0.061 (2)   | 0.0281 (17) | -0.0146 (17) | -0.0045 (15) | -0.0067 (18) |
| N1C  | 0.027 (2)   | 0.031 (2)   | 0.0174 (17) | -0.0041 (16) | -0.0011 (15) | -0.0063 (15) |
| N1D  | 0.030 (2)   | 0.0195 (18) | 0.0173 (17) | -0.0076 (15) | -0.0021 (15) | -0.0024 (14) |
| N2C  | 0.023 (2)   | 0.0220 (19) | 0.0302 (19) | -0.0009 (15) | -0.0112 (16) | -0.0089 (16) |
| N2D  | 0.023 (2)   | 0.026 (2)   | 0.041 (2)   | -0.0028 (17) | -0.0111 (18) | -0.0087 (17) |
| C1A  | 0.021 (2)   | 0.018 (2)   | 0.0109 (18) | -0.0033 (17) | -0.0063 (16) | -0.0032 (16) |
| C1B  | 0.019 (2)   | 0.028 (2)   | 0.021 (2)   | -0.0018 (18) | -0.0087 (18) | -0.0100 (18) |
| C1C  | 0.060 (3)   | 0.038 (3)   | 0.026 (2)   | -0.015 (2)   | 0.006 (2)    | -0.007 (2)   |
| C1D  | 0.040 (3)   | 0.020 (2)   | 0.024 (2)   | -0.0040 (19) | -0.003(2)    | -0.0037 (19) |
| C2A  | 0.017 (2)   | 0.024 (2)   | 0.020 (2)   | -0.0031 (18) | -0.0069 (17) | -0.0085 (18) |
| C2B  | 0.030 (3)   | 0.043 (3)   | 0.016 (2)   | 0.006 (2)    | -0.0109 (19) | -0.012 (2)   |
| C2C  | 0.025 (3)   | 0.046 (3)   | 0.023 (2)   | 0.001 (2)    | -0.0013 (18) | -0.016 (2)   |
| C2D  | 0.025 (2)   | 0.023 (2)   | 0.017 (2)   | -0.0062 (18) | -0.0036 (18) | -0.0034 (18) |
| C3A  | 0.026 (2)   | 0.017 (2)   | 0.019 (2)   | -0.0078 (18) | -0.0076 (18) | -0.0010 (17) |
| C3B  | 0.043 (3)   | 0.025 (2)   | 0.026 (2)   | 0.013 (2)    | -0.021 (2)   | -0.013 (2)   |
| C3C  | 0.028 (3)   | 0.069 (3)   | 0.022 (2)   | 0.000 (2)    | -0.002(2)    | -0.016 (2)   |
| C3D  | 0.032 (3)   | 0.030 (2)   | 0.028 (2)   | -0.005 (2)   | -0.005 (2)   | -0.006(2)    |
| C4A  | 0.031 (3)   | 0.016 (2)   | 0.018 (2)   | 0.0012 (18)  | -0.0072 (18) | -0.0081 (17) |
| C4B  | 0.038 (3)   | 0.017 (2)   | 0.035 (2)   | -0.007 (2)   | -0.019 (2)   | -0.003 (2)   |
| C4C  | 0.022 (2)   | 0.047 (3)   | 0.022 (2)   | -0.010(2)    | -0.0022 (18) | -0.011 (2)   |
| C4D  | 0.024 (2)   | 0.022 (2)   | 0.032 (2)   | 0.0028 (18)  | -0.0034 (19) | -0.0015 (19) |
| C5A  | 0.017 (2)   | 0.023 (2)   | 0.021 (2)   | 0.0007 (17)  | -0.0058 (17) | -0.0074 (18) |
| C5B  | 0.029 (3)   | 0.034 (3)   | 0.035 (3)   | -0.012 (2)   | 0.000 (2)    | -0.003 (2)   |
| C5C  | 0.043 (3)   | 0.035 (3)   | 0.070 (4)   | 0.003 (2)    | -0.026 (3)   | -0.008(3)    |
| C5D  | 0.041 (3)   | 0.026 (2)   | 0.056 (3)   | -0.003 (2)   | -0.026 (2)   | -0.004 (2)   |
| C6A  | 0.019 (2)   | 0.020 (2)   | 0.0149 (19) | -0.0076 (17) | -0.0016 (17) | -0.0049 (17) |
| C6B  | 0.026 (2)   | 0.020 (2)   | 0.034 (2)   | -0.0047 (19) | 0.002 (2)    | -0.009 (2)   |
| C6C  | 0.033 (3)   | 0.056 (3)   | 0.022 (2)   | -0.017 (2)   | 0.002 (2)    | -0.014 (2)   |
| C6D  | 0.074 (4)   | 0.050 (3)   | 0.036 (3)   | 0.009 (3)    | -0.023 (3)   | -0.015 (3)   |
| C7A  | 0.015 (2)   | 0.0149 (19) | 0.0137 (18) | -0.0011 (16) | -0.0029 (16) | -0.0031 (16) |
| C7B  | 0.023 (2)   | 0.019 (2)   | 0.0140 (19) | -0.0107 (17) | -0.0049 (17) | 0.0018 (17)  |
| C8A  | 0.022 (2)   | 0.014 (2)   | 0.020 (2)   | -0.0015 (17) | -0.0077 (17) | -0.0032 (17) |
| C8B  | 0.022 (2)   | 0.025 (2)   | 0.023 (2)   | -0.0107 (18) | -0.0103 (18) | 0.0036 (19)  |
| C9A  | 0.031 (2)   | 0.021 (2)   | 0.014 (2)   | 0.0071 (18)  | -0.0072 (18) | -0.0065 (17) |
| C9B  | 0.034 (3)   | 0.025 (2)   | 0.023 (2)   | -0.015 (2)   | -0.0091 (19) | -0.0023 (19) |
| C10A | 0.034 (3)   | 0.018 (2)   | 0.029 (2)   | -0.0041 (19) | -0.019 (2)   | -0.0104 (19) |
| C10B | 0.040 (3)   | 0.013 (2)   | 0.022 (2)   | -0.0031 (19) | -0.003 (2)   | -0.0020 (18) |
| C11A | 0.025 (2)   | 0.017 (2)   | 0.030 (2)   | -0.0086 (18) | -0.0094 (19) | -0.0001 (18) |
| C11B | 0.025 (3)   | 0.033 (2)   | 0.026 (2)   | -0.009 (2)   | -0.0087 (19) | -0.003 (2)   |
| C11S | 0.034 (3)   | 0.029 (3)   | 0.073 (4)   | -0.003 (2)   | -0.013 (3)   | -0.025 (3)   |
| C12A | 0.023 (2)   | 0.021 (2)   | 0.017 (2)   | -0.0059 (18) | -0.0051 (18) | -0.0025 (17) |
| C12B | 0.031 (3)   | 0.020 (2)   | 0.019 (2)   | -0.0121 (18) | -0.0067 (18) | -0.0055 (18) |
| C12S | 0.038 (3)   | 0.027 (2)   | 0.047 (3)   | -0.002 (2)   | 0.000 (2)    | -0.011 (2)   |
| C13A | 0.015 (2)   | 0.018 (2)   | 0.0161 (19) | -0.0057 (16) | -0.0063 (16) | -0.0013 (16) |
| C13B | 0.023 (2)   | 0.022 (2)   | 0.019 (2)   | -0.0033 (18) | -0.0022 (18) | -0.0059 (18) |
| C13S | 0.037 (3)   | 0.027 (3)   | 0.048 (3)   | 0.003 (2)    | -0.016 (2)   | -0.003 (2)   |

| C14A | 0.019 (2) | 0.022 (2) | 0.0139 (19) | -0.0064 (17) | -0.0032 (16) | -0.0055 (17) |
|------|-----------|-----------|-------------|--------------|--------------|--------------|
| C14B | 0.019 (2) | 0.030 (2) | 0.025 (2)   | -0.0067 (19) | -0.0040 (18) | -0.008 (2)   |
| C14S | 0.025 (3) | 0.025 (2) | 0.051 (3)   | 0.0007 (19)  | -0.009 (2)   | -0.003 (2)   |
| C15A | 0.021 (2) | 0.019 (2) | 0.022 (2)   | -0.0030 (17) | -0.0127 (18) | 0.0005 (18)  |
| C15B | 0.024 (2) | 0.023 (2) | 0.027 (2)   | -0.0023 (19) | 0.0045 (19)  | 0.0024 (19)  |
| C15S | 0.039 (3) | 0.034 (3) | 0.042 (3)   | -0.001 (2)   | -0.003 (2)   | -0.016 (2)   |
| C16A | 0.026 (2) | 0.033 (2) | 0.0075 (18) | -0.0131 (19) | -0.0080 (17) | 0.0036 (18)  |
| C16B | 0.040 (3) | 0.027 (2) | 0.018 (2)   | 0.006 (2)    | -0.008 (2)   | -0.0091 (19) |
| C16S | 0.048 (3) | 0.041 (3) | 0.046 (3)   | 0.006 (2)    | -0.014 (3)   | -0.026 (3)   |
| C17A | 0.017 (2) | 0.033 (2) | 0.0122 (19) | -0.0056 (18) | -0.0010 (16) | -0.0090 (18) |
| C17B | 0.041 (3) | 0.020 (2) | 0.027 (2)   | -0.003 (2)   | -0.016 (2)   | -0.0084 (19) |
| C18A | 0.018 (2) | 0.018 (2) | 0.021 (2)   | -0.0062 (17) | -0.0079 (17) | -0.0038 (17) |
| C18B | 0.027 (2) | 0.019 (2) | 0.026 (2)   | -0.0075 (18) | -0.0038 (19) | -0.0030 (18) |
| C21S | 0.050 (4) | 0.034 (3) | 0.051 (3)   | 0.012 (2)    | -0.004 (3)   | -0.012 (2)   |
| C22S | 0.034 (3) | 0.041 (3) | 0.053 (3)   | -0.002 (2)   | -0.014 (2)   | 0.005 (3)    |
| C23S | 0.047 (3) | 0.033 (3) | 0.030 (2)   | -0.014 (2)   | -0.007 (2)   | -0.006 (2)   |
| C24S | 0.044 (3) | 0.026 (2) | 0.028 (2)   | -0.004 (2)   | 0.007 (2)    | -0.001 (2)   |
| C25S | 0.032 (3) | 0.029 (3) | 0.044 (3)   | -0.004 (2)   | -0.007 (2)   | 0.004 (2)    |
| C26S | 0.048 (3) | 0.036 (3) | 0.041 (3)   | -0.007 (2)   | -0.015 (2)   | -0.012 (2)   |
| C31S | 0.035 (3) | 0.052 (3) | 0.022 (2)   | -0.023 (2)   | -0.003 (2)   | -0.007 (2)   |
| C32S | 0.055 (3) | 0.023 (2) | 0.039 (3)   | -0.008 (2)   | -0.027 (3)   | -0.006 (2)   |
| C33S | 0.030 (3) | 0.041 (3) | 0.038 (3)   | 0.007 (2)    | -0.016 (2)   | -0.024 (2)   |
| B1A  | 0.019 (3) | 0.021 (2) | 0.012 (2)   | -0.0066 (19) | -0.0021 (18) | -0.0053 (19) |
| B1B  | 0.014 (2) | 0.027 (3) | 0.024 (2)   | -0.009 (2)   | -0.001 (2)   | -0.004 (2)   |
|      |           |           |             |              |              |              |

Geometric parameters (Å, °)

| F2A—C2A   | 1.359 (4) | C4B—C5B  | 1.374 (6) |
|-----------|-----------|----------|-----------|
| F2B—C2B   | 1.341 (4) | C4C—H4CA | 0.9900    |
| F3A—C3A   | 1.344 (4) | C4C—H4CB | 0.9900    |
| F3B—C3B   | 1.351 (4) | C4D—H4DA | 0.9900    |
| F4A—C4A   | 1.349 (4) | C4D—H4DB | 0.9900    |
| F4B—C4B   | 1.346 (4) | C5A—C6A  | 1.376 (5) |
| F5A—C5A   | 1.354 (4) | C5B—C6B  | 1.376 (5) |
| F5B—C5B   | 1.352 (5) | C5C—H5CA | 0.9800    |
| F6A—C6A   | 1.361 (4) | C5C—H5CB | 0.9800    |
| F6B—C6B   | 1.362 (4) | C5C—H5CC | 0.9800    |
| F8A—C8A   | 1.357 (4) | C5D—H5DA | 0.9800    |
| F8B—C8B   | 1.356 (4) | C5D—H5DB | 0.9800    |
| F9A—C9A   | 1.346 (4) | C5D—H5DC | 0.9800    |
| F9B—C9B   | 1.350 (4) | С6С—Н6СА | 0.9800    |
| F10A-C10A | 1.353 (4) | С6С—Н6СВ | 0.9800    |
| F10B-C10B | 1.353 (4) | C6C—H6CC | 0.9800    |
| F11A—C11A | 1.353 (4) | C6D—H6DA | 0.9800    |
| F11B—C11B | 1.351 (4) | C6D—H6DB | 0.9800    |
| F12A—C12A | 1.353 (4) | C6D—H6DC | 0.9800    |
| F12B—C12B | 1.369 (4) | C7A—C8A  | 1.387 (5) |
| F14A—C14A | 1.357 (4) | C7A—C12A | 1.388 (5) |
|           |           |          |           |

| F14B—C14B            | 1.355 (4)             | C7A—B1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.663 (5)            |
|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| F15A—C15A            | 1.354 (4)             | C7B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.371 (5)            |
| F15B—C15B            | 1.352 (4)             | C7B—C8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.385 (5)            |
| F16A—C16A            | 1.347 (4)             | C7B—B1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.650 (6)            |
| F16B—C16B            | 1.344 (4)             | C8A—C9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.379 (5)            |
| F17A—C17A            | 1.351 (4)             | C8B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.378 (5)            |
| F17B—C17B            | 1.352 (4)             | C9A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.371 (5)            |
| F18A—C18A            | 1.360 (4)             | C9B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.360 (6)            |
| F18B—C18B            | 1.357 (4)             | C10A—C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.371 (5)            |
| O1A—B1A              | 1.484 (5)             | C10B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.372 (5)            |
| O1A—H1A              | 0.8400                | C11A—C12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.375 (5)            |
| 01B—B1B              | 1.487 (5)             | C11B-C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.371 (5)            |
| 01B—H1B              | 0.8400                | C11S - C16S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 365 (6)            |
| N1C-C3C              | 1.454 (5)             | C11S - C12S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.382 (6)            |
| NIC-CIC              | 1 473 (5)             | C11S—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| N1C-C2C              | 1 475 (5)             | C12S— $C13S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 393 (6)            |
| N1D-C2D              | 1 470 (4)             | C12S H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| N1D_C3D              | 1.470(4)<br>1 472 (5) | C123 $C12A$ $C18A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 380 (5)            |
| NID-CID              | 1.472(5)<br>1 478(4)  | C13A - C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.300(5)<br>1.395(5) |
| N2C C5C              | 1.478 (4)             | $C_{13A} = B_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.575(5)             |
| N2C C6C              | 1.403(5)<br>1.483(5)  | C13R - C14R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.049(5)<br>1.374(5) |
| N2C = C4C            | 1.405(5)              | $C_{13}^{13} = C_{14}^{14} = $ | 1.374(3)<br>1.305(5) |
| N2C H2C              | 1.405(5)              | C13D - C18D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.595 (5)            |
| N2D C5D              | 1.04(4)               | $C_{13}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{10}D_{}D_{-$                                                                                                                                                                                                                                                                                                                                                     | 1.039(0)<br>1.267(6) |
| N2D C4D              | 1.405(5)              | $C_{125} = U_{125}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.307 (0)            |
| N2D C4D              | 1.493(3)              | C135—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300               |
|                      | 1.303(3)              | C14A - C15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.372(3)             |
| $N_2D - H_2D$        | 0.80(4)               | C14B - C15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.380(3)             |
| C1A = C2A            | 1.379 (3)             | C145 - C155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.570(0)             |
| CIA-CZA              | 1.379(3)              | C14S— $H14A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500               |
| CIA—BIA              | 1.000 (0)             | CI5A—CI6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.367(5)             |
| CIB-COB              | 1.381 (5)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.364 (5)            |
| CIB-C2B              | 1.397 (5)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.375 (6)            |
| CIG_HIGA             | 1.646 (6)             | CISS—HISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| CIC—HICA             | 0.9800                | C16A - C17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.370 (5)            |
| CIC—HICB             | 0.9800                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.375 (6)            |
|                      | 0.9800                | CI6S—HI6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| CID—HIDA             | 0.9800                | CI7A—CI8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.384 (5)            |
| CID—HIDB             | 0.9800                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.376 (5)            |
| CID—HIDC             | 0.9800                | C21S—C22S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.370 (6)            |
| C2A—C3A              | 1.387 (5)             | C21S—C26S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.378 (6)            |
| C2B—C3B              | 1.382 (6)             | C21S—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| $C2C - C2C^1$        | 1.503 (7)             | C228—C238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.373 (6)            |
| C2C—H2CA             | 0.9900                | C22S—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| C2C—H2CB             | 0.9900                | C238—C248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.378 (6)            |
| C2D—C2D <sup>n</sup> | 1.522 (7)             | C23S—H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| C2D—H2DA             | 0.9900                | C24S—C25S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.375 (6)            |
| C2D—H2DB             | 0.9900                | C24S—H24A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500               |
| C3A—C4A              | 1.357 (5)             | C25S—C26S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.383 (6)            |

| C3B—C4B       | 1.359 (6) | C25S—H25A                | 0.9500    |
|---------------|-----------|--------------------------|-----------|
| C3C—C4C       | 1.526 (5) | C26S—H26A                | 0.9500    |
| СЗС—НЗСА      | 0.9900    | C31S—C33S <sup>iii</sup> | 1.369 (6) |
| СЗС—НЗСВ      | 0.9900    | C31S—C32S                | 1.369 (6) |
| C3D—C4D       | 1.507 (5) | C31S—H31A                | 0.9500    |
| C3D—H3DA      | 0.9900    | C32S—C33S                | 1.369 (6) |
| C3D—H3DB      | 0.9900    | C32S—H32A                | 0.9500    |
| C4A—C5A       | 1.372 (5) | C33S—H33A                | 0.9500    |
|               |           |                          |           |
| B1A—O1A—H1A   | 109.5     | C8A—C7A—B1A              | 119.9 (3) |
| B1B-01B-H1B   | 109.5     | C12A—C7A—B1A             | 126.9 (3) |
| C3C—N1C—C1C   | 109.1 (3) | C12B—C7B—C8B             | 113.2 (3) |
| C3C—N1C—C2C   | 108.8 (3) | C12B—C7B—B1B             | 121.3 (3) |
| C1C—N1C—C2C   | 110.2 (3) | C8B—C7B—B1B              | 125.5 (3) |
| C2D—N1D—C3D   | 109.6 (3) | F8A—C8A—C9A              | 115.4 (3) |
| C2D—N1D—C1D   | 111.8 (3) | F8A—C8A—C7A              | 119.7 (3) |
| C3D—N1D—C1D   | 110.3 (3) | C9A—C8A—C7A              | 124.9 (3) |
| C5C—N2C—C6C   | 110.5 (3) | F8B—C8B—C9B              | 114.9 (3) |
| C5C—N2C—C4C   | 111.9 (3) | F8B—C8B—C7B              | 121.1 (4) |
| C6C—N2C—C4C   | 110.0 (3) | C9B—C8B—C7B              | 124.0 (4) |
| C5C—N2C—H2C   | 104 (2)   | F9A—C9A—C10A             | 120.5 (3) |
| C6C—N2C—H2C   | 109 (2)   | F9A—C9A—C8A              | 120.5 (3) |
| C4C—N2C—H2C   | 112 (2)   | C10A—C9A—C8A             | 118.9 (3) |
| C5D—N2D—C6D   | 111.1 (4) | F9B-C9B-C10B             | 119.4 (4) |
| C5D—N2D—C4D   | 113.5 (3) | F9B—C9B—C8B              | 121.4 (4) |
| C6D—N2D—C4D   | 109.5 (3) | C10B—C9B—C8B             | 119.2 (3) |
| C5D—N2D—H2D   | 111 (3)   | F10A-C10A-C11A           | 120.7 (3) |
| C6D—N2D—H2D   | 106 (3)   | F10A—C10A—C9A            | 120.3 (3) |
| C4D—N2D—H2D   | 105 (3)   | C11A—C10A—C9A            | 119.0 (3) |
| C6A—C1A—C2A   | 112.6 (3) | F10B—C10B—C9B            | 119.7 (3) |
| C6A—C1A—B1A   | 121.2 (3) | F10B—C10B—C11B           | 120.4 (4) |
| C2A—C1A—B1A   | 125.9 (3) | C9B—C10B—C11B            | 119.8 (4) |
| C6B—C1B—C2B   | 112.6 (4) | F11A-C11A-C10A           | 119.4 (3) |
| C6B-C1B-B1B   | 128.4 (3) | F11A—C11A—C12A           | 120.5 (3) |
| C2B—C1B—B1B   | 118.3 (3) | C10A—C11A—C12A           | 120.1 (3) |
| N1C—C1C—H1CA  | 109.5     | F11B—C11B—C12B           | 122.0 (3) |
| N1C—C1C—H1CB  | 109.5     | F11B—C11B—C10B           | 119.7 (4) |
| H1CA—C1C—H1CB | 109.5     | C12B—C11B—C10B           | 118.3 (4) |
| N1C—C1C—H1CC  | 109.5     | C16S—C11S—C12S           | 120.4 (4) |
| H1CA—C1C—H1CC | 109.5     | C16S—C11S—H11A           | 119.8     |
| H1CB—C1C—H1CC | 109.5     | C12S—C11S—H11A           | 119.8     |
| N1D—C1D—H1DA  | 109.5     | F12A—C12A—C11A           | 115.2 (3) |
| N1D—C1D—H1DB  | 109.5     | F12A—C12A—C7A            | 120.9 (3) |
| H1DA—C1D—H1DB | 109.5     | C11A—C12A—C7A            | 123.9 (3) |
| N1D—C1D—H1DC  | 109.5     | F12B—C12B—C7B            | 118.7 (3) |
| H1DA—C1D—H1DC | 109.5     | F12B-C12B-C11B           | 115.7 (3) |
| H1DB—C1D—H1DC | 109.5     | C7B—C12B—C11B            | 125.4 (3) |
| F2A—C2A—C1A   | 120.6 (3) | C11S—C12S—C13S           | 119.0 (5) |
|               |           |                          |           |

|                            | 1145(2)   | C110 C120 112A                                           | 120 5               |
|----------------------------|-----------|----------------------------------------------------------|---------------------|
| F2A—C2A—C3A                | 114.5 (3) | CIIS—CI2S—HI2A                                           | 120.5               |
| CIA—C2A—C3A                | 124.9 (4) | C13S—C12S—H12A                                           | 120.5               |
| F2B—C2B—C3B                | 116.1 (4) | C18A—C13A—C14A                                           | 113.1 (3)           |
| F2B—C2B—C1B                | 119.6 (4) | C18A—C13A—B1A                                            | 127.5 (3)           |
| C3B—C2B—C1B                | 124.3 (4) | C14A—C13A—B1A                                            | 119.4 (3)           |
| N1C—C2C—C2C <sup>i</sup>   | 112.7 (4) | C14B—C13B—C18B                                           | 113.1 (3)           |
| N1C—C2C—H2CA               | 109.1     | C14B—C13B—B1B                                            | 120.9 (3)           |
| C2C <sup>i</sup> —C2C—H2CA | 109.1     | C18B—C13B—B1B                                            | 126.0 (3)           |
| N1C—C2C—H2CB               | 109.1     | C14S—C13S—C12S                                           | 120.0 (4)           |
| $C2C^{i}$ — $C2C$ — $H2CB$ | 109.1     | C14S—C13S—H13A                                           | 120.0               |
| H2CA—C2C—H2CB              | 107.8     | C12S— $C13S$ — $H13A$                                    | 120.0               |
| $N1D - C2D - C2D^{ii}$     | 111.9(3)  | $F_{14} - C_{14} - C_{15}$                               | 120.0<br>116.2 (3)  |
| NID C2D H2DA               | 100.2     | $F_{14A} = C_{14A} = C_{13A}$                            | 110.2(3)            |
| NID - C2D - H2DA           | 109.2     | $C_{15A} = C_{14A} = C_{15A}$                            | 119.4(3)            |
| $C_2D^2 - C_2D - H_2DA$    | 109.2     | CISA—CI4A—CISA                                           | 124.4 (3)           |
| NID—C2D—H2DB               | 109.2     | F14B—C14B—C13B                                           | 119.4 (3)           |
| $C2D^n$ — $C2D$ — $H2DB$   | 109.2     | F14B—C14B—C15B                                           | 115.9 (3)           |
| H2DA—C2D—H2DB              | 107.9     | C13B—C14B—C15B                                           | 124.7 (3)           |
| F3A—C3A—C4A                | 120.2 (3) | C13S—C14S—C15S                                           | 120.4 (4)           |
| F3A—C3A—C2A                | 120.5 (3) | C13S—C14S—H14A                                           | 119.8               |
| C4A—C3A—C2A                | 119.4 (3) | C15S—C14S—H14A                                           | 119.8               |
| F3B—C3B—C4B                | 119.6 (4) | F15A—C15A—C16A                                           | 119.4 (3)           |
| F3B—C3B—C2B                | 120.5 (4) | F15A—C15A—C14A                                           | 120.9 (3)           |
| C4B—C3B—C2B                | 119.8 (4) | C16A—C15A—C14A                                           | 119.7 (3)           |
| N1C—C3C—C4C                | 113.4 (3) | F15B—C15B—C16B                                           | 120.2 (4)           |
| N1C—C3C—H3CA               | 108.9     | F15B—C15B—C14B                                           | 119.9 (4)           |
| C4C—C3C—H3CA               | 108.9     | C16B— $C15B$ — $C14B$                                    | 119.8 (4)           |
| N1C-C3C-H3CB               | 108.9     | C16S - C15S - C14S                                       | 119.0(1)            |
| C4C-C3C-H3CB               | 108.9     | $C_{16} = C_{15} = H_{15}$                               | 120.2               |
| H3CA C3C H3CB              | 107.7     | C148 C158 H15A                                           | 120.2               |
| NID C3D C4D                | 107.7     | E16A C16A C15A                                           | 120.2<br>120.8(3)   |
|                            | 115.8 (5) | $\mathbf{F}_{10A} = \mathbf{C}_{10A} = \mathbf{C}_{17A}$ | 120.0(3)            |
|                            | 108.8     | F10A - C10A - C17A                                       | 120.1(3)            |
| C4D—C3D—H3DA               | 108.8     |                                                          | 119.0 (3)           |
| NID—C3D—H3DB               | 108.8     | F16B—C16B—C15B                                           | 121.2 (4)           |
| C4D—C3D—H3DB               | 108.8     | F16B—C16B—C17B                                           | 120.4 (3)           |
| H3DA—C3D—H3DB              | 107.7     | C15B—C16B—C17B                                           | 118.4 (3)           |
| F4A—C4A—C3A                | 121.4 (3) | C11S—C16S—C15S                                           | 120.4 (5)           |
| F4A—C4A—C5A                | 120.0 (4) | C11S—C16S—H16A                                           | 119.8               |
| C3A—C4A—C5A                | 118.6 (4) | C15S—C16S—H16A                                           | 119.8               |
| F4B—C4B—C3B                | 120.8 (4) | F17A—C17A—C16A                                           | 119.7 (3)           |
| F4B—C4B—C5B                | 120.5 (4) | F17A—C17A—C18A                                           | 120.8 (3)           |
| C3B—C4B—C5B                | 118.7 (4) | C16A—C17A—C18A                                           | 119.5 (3)           |
| N2C—C4C—C3C                | 113.6 (3) | F17B—C17B—C16B                                           | 118.9 (3)           |
| N2C—C4C—H4CA               | 108.8     | F17B—C17B—C18B                                           | 121.1 (4)           |
| С3С—С4С—Н4СА               | 108.8     | C16B—C17B—C18B                                           | 120.0 (3)           |
| N2C—C4C—H4CB               | 108.8     | F18A—C18A—C13A                                           | 120.7(3)            |
| C3C—C4C—H4CB               | 108.8     | F18A— $C18A$ — $C17A$                                    | 1150(3)             |
| H4CA - C4C - H4CB          | 107.7     | C13A - C18A - C17A                                       | 124 3 (3)           |
| N2D  C4D  C2D              | 10/.7     | C13A - C10A - C1/A $E19D - C19D - C17D$                  | 127.3(3)<br>1155(2) |
| 1N2D - C4D - C3D           | 114.4 (3) | LIOD-LIOD-LI/D                                           | 113.3 (3)           |

| N2D—C4D—H4DA    | 108.7     | F18B-C18B-C13B                 | 120.6 (3)  |
|-----------------|-----------|--------------------------------|------------|
| C3D—C4D—H4DA    | 108.7     | C17B—C18B—C13B                 | 123.9 (4)  |
| N2D—C4D—H4DB    | 108.7     | C22S—C21S—C26S                 | 120.8 (4)  |
| C3D—C4D—H4DB    | 108.7     | C22S—C21S—H21A                 | 119.6      |
| H4DA—C4D—H4DB   | 107.6     | C26S—C21S—H21A                 | 119.6      |
| F5A—C5A—C4A     | 119.6 (3) | C21S—C22S—C23S                 | 119.8 (5)  |
| F5A—C5A—C6A     | 120.5 (3) | C21S—C22S—H22A                 | 120.1      |
| C4A—C5A—C6A     | 119.8 (4) | C23S—C22S—H22A                 | 120.1      |
| F5BC5BC4B       | 119.8 (4) | C22S—C23S—C24S                 | 120.1 (4)  |
| F5B—C5B—C6B     | 120.4 (4) | C22S—C23S—H23A                 | 119.9      |
| C4B—C5B—C6B     | 119.8 (4) | C24S—C23S—H23A                 | 119.9      |
| N2C—C5C—H5CA    | 109.5     | C25S—C24S—C23S                 | 119.9 (4)  |
| N2C—C5C—H5CB    | 109.5     | C25S—C24S—H24A                 | 120.1      |
| H5CA—C5C—H5CB   | 109.5     | C23S—C24S—H24A                 | 120.1      |
| N2C—C5C—H5CC    | 109.5     | C24S—C25S—C26S                 | 120.3 (4)  |
| H5CA—C5C—H5CC   | 109.5     | C24S—C25S—H25A                 | 119.9      |
| H5CB—C5C—H5CC   | 109.5     | C26S—C25S—H25A                 | 119.9      |
| N2D—C5D—H5DA    | 109.5     | C21S—C26S—C25S                 | 119.1 (4)  |
| N2D—C5D—H5DB    | 109.5     | C21S—C26S—H26A                 | 120.4      |
| H5DA—C5D—H5DB   | 109.5     | C25S—C26S—H26A                 | 120.4      |
| N2D—C5D—H5DC    | 109.5     | C33S <sup>iii</sup> —C31S—C32S | 119.6 (4)  |
| H5DA—C5D—H5DC   | 109.5     | C33S <sup>iii</sup> —C31S—H31A | 120.2      |
| H5DB—C5D—H5DC   | 109.5     | C32S—C31S—H31A                 | 120.2      |
| F6A—C6A—C5A     | 116.3 (3) | C33S—C32S—C31S                 | 120.2 (4)  |
| F6A—C6A—C1A     | 119.1 (3) | C33S—C32S—H32A                 | 119.9      |
| C5A—C6A—C1A     | 124.6 (3) | C31S—C32S—H32A                 | 119.9      |
| F6B—C6B—C5B     | 114.4 (3) | C31S <sup>iii</sup> —C33S—C32S | 120.2 (4)  |
| F6B—C6B—C1B     | 120.9 (3) | C31S <sup>iii</sup> —C33S—H33A | 119.9      |
| C5B—C6B—C1B     | 124.7 (4) | C32S—C33S—H33A                 | 119.9      |
| N2C—C6C—H6CA    | 109.5     | O1A—B1A—C13A                   | 104.5 (3)  |
| N2C—C6C—H6CB    | 109.5     | O1A—B1A—C1A                    | 112.3 (3)  |
| Н6СА—С6С—Н6СВ   | 109.5     | C13A—B1A—C1A                   | 114.6 (3)  |
| N2C—C6C—H6CC    | 109.5     | O1A—B1A—C7A                    | 108.9 (3)  |
| Н6СА—С6С—Н6СС   | 109.5     | C13A—B1A—C7A                   | 110.8 (3)  |
| Н6СВ—С6С—Н6СС   | 109.5     | C1A—B1A—C7A                    | 105.7 (3)  |
| N2D—C6D—H6DA    | 109.5     | O1B—B1B—C1B                    | 103.1 (3)  |
| N2D—C6D—H6DB    | 109.5     | O1B—B1B—C7B                    | 112.5 (3)  |
| H6DA—C6D—H6DB   | 109.5     | C1B—B1B—C7B                    | 112.0 (3)  |
| N2D—C6D—H6DC    | 109.5     | O1B—B1B—C13B                   | 107.2 (3)  |
| H6DA—C6D—H6DC   | 109.5     | C1B—B1B—C13B                   | 114.5 (3)  |
| H6DB—C6D—H6DC   | 109.5     | C7B—B1B—C13B                   | 107.6 (3)  |
| C8A—C7A—C12A    | 113.1 (3) |                                |            |
|                 |           |                                |            |
| C6A—C1A—C2A—F2A | 176.9 (3) | C8B—C7B—C12B—C11B              | 4.0 (6)    |
| B1A—C1A—C2A—F2A | -9.0 (5)  | B1B-C7B-C12B-C11B              | -173.0 (4) |
| C6A—C1A—C2A—C3A | -2.3 (5)  | F11B—C11B—C12B—F12B            | 2.4 (5)    |
| B1A—C1A—C2A—C3A | 171.8 (3) | C10B—C11B—C12B—F12B            | -175.6 (3) |
| C6B—C1B—C2B—F2B | 179.9 (3) | F11B—C11B—C12B—C7B             | 177.3 (3)  |
|                 | × /       |                                | · /        |

| B1B-C1B-C2B-F2B               | 8.7 (5)    | C10B—C11B—C12B—C7B        | -0.6 (6)   |
|-------------------------------|------------|---------------------------|------------|
| C6B—C1B—C2B—C3B               | -0.5 (6)   | C16S—C11S—C12S—C13S       | -1.9 (6)   |
| B1B-C1B-C2B-C3B               | -171.8 (4) | C11S—C12S—C13S—C14S       | 1.0 (6)    |
| C3C—N1C—C2C—C2C <sup>i</sup>  | 178.3 (5)  | C18A—C13A—C14A—F14A       | 178.9 (3)  |
| C1C-N1C-C2C-C2C <sup>i</sup>  | -62.1 (6)  | B1A—C13A—C14A—F14A        | -1.4 (5)   |
| C3D—N1D—C2D—C2D <sup>ii</sup> | -173.2 (4) | C18A—C13A—C14A—C15A       | 0.4 (5)    |
| C1D—N1D—C2D—C2D <sup>ii</sup> | 64.2 (5)   | B1A—C13A—C14A—C15A        | -180.0(3)  |
| F2A—C2A—C3A—F3A               | 1.1 (5)    | C18B—C13B—C14B—F14B       | -177.6(3)  |
| C1A—C2A—C3A—F3A               | -179.7 (3) | B1B-C13B-C14B-F14B        | 2.8 (6)    |
| F2A—C2A—C3A—C4A               | -178.7 (3) | C18B—C13B—C14B—C15B       | 2.0 (6)    |
| C1A—C2A—C3A—C4A               | 0.6 (6)    | B1B—C13B—C14B—C15B        | -177.6 (4) |
| F2B-C2B-C3B-F3B               | -0.7 (5)   | C12S—C13S—C14S—C15S       | -0.2 (6)   |
| C1B—C2B—C3B—F3B               | 179.7 (3)  | F14A—C14A—C15A—F15A       | 1.1 (5)    |
| F2B-C2B-C3B-C4B               | -179.5 (3) | C13A—C14A—C15A—F15A       | 179.7 (3)  |
| C1B—C2B—C3B—C4B               | 0.9 (6)    | F14A—C14A—C15A—C16A       | -177.0(3)  |
| C1C—N1C—C3C—C4C               | 73.7 (4)   | C13A—C14A—C15A—C16A       | 1.6 (6)    |
| C2C—N1C—C3C—C4C               | -166.0(4)  | F14B—C14B—C15B—F15B       | -2.9(5)    |
| C2D—N1D—C3D—C4D               | 164.5 (3)  | C13B—C14B—C15B—F15B       | 177.5 (4)  |
| C1D—N1D—C3D—C4D               | -72.1 (4)  | F14B—C14B—C15B—C16B       | 178.5 (4)  |
| F3A—C3A—C4A—F4A               | -0.7(5)    | C13B—C14B—C15B—C16B       | -1.1(6)    |
| C2A— $C3A$ — $C4A$ — $F4A$    | 179.1 (3)  | C13S - C14S - C15S - C16S | 0.2 (6)    |
| F3A—C3A—C4A—C5A               | -178.3(3)  | F15A—C15A—C16A—F16A       | -1.6(5)    |
| C2A—C3A—C4A—C5A               | 1.5 (5)    | C14A—C15A—C16A—F16A       | 176.6 (3)  |
| F3B-C3B-C4B-F4B               | 0.5 (6)    | F15A—C15A—C16A—C17A       | 179.8 (3)  |
| C2B—C3B—C4B—F4B               | 179.3 (3)  | C14A—C15A—C16A—C17A       | -2.1(5)    |
| F3B-C3B-C4B-C5B               | -179.5(3)  | F15B—C15B—C16B—F16B       | 1.2 (6)    |
| C2B—C3B—C4B—C5B               | -0.7 (6)   | C14B—C15B—C16B—F16B       | 179.8 (4)  |
| C5C—N2C—C4C—C3C               | 67.0 (4)   | F15B—C15B—C16B—C17B       | -179.4(4)  |
| C6C—N2C—C4C—C3C               | -169.8(4)  | C14B—C15B—C16B—C17B       | -0.8(6)    |
| N1C—C3C—C4C—N2C               | 71.9 (5)   | C12S—C11S—C16S—C15S       | 1.9 (7)    |
| C5D—N2D—C4D—C3D               | -60.9(5)   | C14S—C15S—C16S—C11S       | -1.1(6)    |
| C6D—N2D—C4D—C3D               | 174.3 (4)  | F16A—C16A—C17A—F17A       | 1.8 (5)    |
| N1D-C3D-C4D-N2D               | -63.9 (4)  | C15A—C16A—C17A—F17A       | -179.6(3)  |
| F4A—C4A—C5A—F5A               | 0.2 (5)    | F16A—C16A—C17A—C18A       | -178.0(3)  |
| C3A—C4A—C5A—F5A               | 177.8 (3)  | C15A—C16A—C17A—C18A       | 0.6 (5)    |
| F4A—C4A—C5A—C6A               | -179.2 (3) | F16B—C16B—C17B—F17B       | 0.9 (6)    |
| C3A—C4A—C5A—C6A               | -1.5 (5)   | C15B—C16B—C17B—F17B       | -178.5 (4) |
| F4B-C4B-C5B-F5B               | 0.5 (6)    | F16B—C16B—C17B—C18B       | -179.1 (4) |
| C3B—C4B—C5B—F5B               | -179.5 (4) | C15B—C16B—C17B—C18B       | 1.5 (6)    |
| F4B-C4B-C5B-C6B               | -179.8 (4) | C14A—C13A—C18A—F18A       | 177.7 (3)  |
| C3B—C4B—C5B—C6B               | 0.2 (6)    | B1A—C13A—C18A—F18A        | -1.9 (5)   |
| F5A—C5A—C6A—F6A               | -0.5 (5)   | C14A—C13A—C18A—C17A       | -1.9(5)    |
| C4A—C5A—C6A—F6A               | 178.8 (3)  | B1A—C13A—C18A—C17A        | 178.5 (3)  |
| F5A—C5A—C6A—C1A               | -179.8 (3) | F17A—C17A—C18A—F18A       | 2.0 (5)    |
| C4A—C5A—C6A—C1A               | -0.5 (5)   | C16A—C17A—C18A—F18A       | -178.2 (3) |
| C2A—C1A—C6A—F6A               | -177.0(3)  | F17A—C17A—C18A—C13A       | -178.4 (3) |
| B1A—C1A—C6A—F6A               | 8.5 (5)    | C16A—C17A—C18A—C13A       | 1.5 (6)    |
| C2A—C1A—C6A—C5A               | 2.3 (5)    | F17B—C17B—C18B—F18B       | 0.2 (6)    |

| B1A—C1A—C6A—C5A                                                                                                                   | -172.2 (3) | C16B—C17B—C18B—F18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -179.8 (4)           |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| F5B-C5B-C6B-F6B                                                                                                                   | -0.8 (6)   | F17B—C17B—C18B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179.5 (4)            |
| C4B—C5B—C6B—F6B                                                                                                                   | 179.5 (4)  | C16B—C17B—C18B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.5 (6)             |
| F5B-C5B-C6B-C1B                                                                                                                   | 179.9 (4)  | C14B—C13B—C18B—F18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178.1 (3)            |
| C4B—C5B—C6B—C1B                                                                                                                   | 0.2 (7)    | B1B-C13B-C18B-F18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.3 (6)             |
| C2B—C1B—C6B—F6B                                                                                                                   | -179.4(3)  | C14B—C13B—C18B—C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.2(6)              |
| B1B—C1B—C6B—F6B                                                                                                                   | -9.2 (6)   | B1B-C13B-C18B-C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.4 (4)            |
| C2B—C1B—C6B—C5B                                                                                                                   | 0.0 (6)    | C26S—C21S—C22S—C23S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.4(7)              |
| B1B-C1B-C6B-C5B                                                                                                                   | 170.1 (4)  | $C_{21}S_{C_{22}}C_{23}S_{C_{24}}C_{24}S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1 (7)              |
| C12A - C7A - C8A - F8A                                                                                                            | 178.3 (3)  | $C_{22}S_{23}S_{23}S_{24}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{25}S_{2$ | 0.1 (6)              |
| B1A—C7A—C8A—F8A                                                                                                                   | 0.7(5)     | $C_{23} = C_{24} = C_{25} = C_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.9(6)              |
| $C_{12A}$ $C_{7A}$ $C_{8A}$ $C_{9A}$                                                                                              | -1.7(5)    | $C_{225} = C_{215} = C_{255} = C_{2$ | 0.5(7)               |
| B1A - C7A - C8A - C9A                                                                                                             | -1793(3)   | $C_{24} = C_{25} = C_{26} = C_{215} = C_{26} = C_{215} = C_{26} = C_{215} =$ | 0.6(7)               |
| C12B - C7B - C8B - F8B                                                                                                            | 177.9(3)   | $C_{33}S_{11}^{11} - C_{31}S_{12}^{11} - C_{32}S_{12}^{11} - C_{33}S_{12}^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0(7)               |
| B1B C7B C8B F8B                                                                                                                   | -52(6)     | $C_{31}S_{-}C_{32}S_{-}C_{33}S_{-}C_{31}S_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.4(7)              |
| $C_{12}B = C_{7}B = C_{8}B = C_{9}B$                                                                                              | -4.6(5)    | $C_{184} - C_{134} - B_{14} - O_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122.2(4)             |
| B1B C7B C8B C9B                                                                                                                   | 1723(4)    | $C_{14A}$ $C_{13A}$ $B_{1A}$ $O_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -57 A (4)            |
| $\mathbf{F}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}}$ | 172.3(4)   | $C_{14A} = C_{13A} = D_{1A} = O_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.2(5)              |
| C7A C8A C0A F0A                                                                                                                   | -178 1 (3) | $C_{10A} = C_{13A} = B_{1A} = C_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2(3)<br>170 2 (3)  |
| C/A - CoA - CoA - CiaA                                                                                                            | -177.4(3)  | C14A - C13A - D1A - C1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -120.6(4)            |
| C7A C8A C9A C10A                                                                                                                  | -1/7.4(5)  | $C_{10}A = C_{10}A = D_{10}A = C_{10}A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -120.0(4)            |
| C/A = C8A = C9A = C10A                                                                                                            | 2.7(0)     | $C_{A} = C_{A} = D_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.0(4)              |
| $\Gamma \delta D = C \delta D = C \delta D = F \delta D$                                                                          | 0.1(3)     | COA - CIA - BIA - OIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170.8(3)             |
| $C/B$ — $C\delta B$ — $C\delta B$ — $C\delta B$ — $C10 B$                                                                         | -177.0(3)  | $C_{A}$ $C_{A}$ $D_{A}$ $D_{A}$ $D_{A}$ $C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.8(3)              |
| $F \delta B = C \delta B = C \delta B = C 10 B$                                                                                   | 1/9.3 (3)  | COA - CIA - DIA - CI3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -70.1(4)             |
| C/B = C8B = C9B = C10B                                                                                                            | 1.9(0)     | $C_{2A}$ — $C_{1A}$ — $B_{1A}$ — $C_{13A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.2(4)             |
| F9A = C9A = C10A = F10A                                                                                                           | -0.5(0)    | COA - CIA - BIA - C/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.2 (4)             |
| C8A - C9A - C10A - F10A                                                                                                           | 1/8./(3)   | $C_{2A}$ $C_{1A}$ $B_{1A}$ $C_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -121.5(4)            |
| F9A—C9A—C10A—C11A                                                                                                                 | 1/9.2 (3)  | C8A—C/A—BIA—OIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -44.7 (4)            |
| C8A - C9A - C10A - C11A                                                                                                           | -1.6(6)    | CI2A - C/A - BIA - OIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138.0 (4)            |
| F9B—C9B—C10B—F10B                                                                                                                 | 1.2 (5)    | C8A—C/A—BIA—CI3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -159.2(3)            |
| C8B—C9B—C10B—F10B                                                                                                                 | -178.2 (3) | CI2A—C/A—BIA—CI3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.6 (5)             |
| F9B—C9B—C10B—C11B                                                                                                                 | -178.7(3)  | C8A—C/A—BIA—CIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.2 (4)             |
| C8B—C9B—C10B—C11B                                                                                                                 | 1.9 (6)    | CI2A—C/A—BIA—CIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -101.1 (4)           |
| FIOA—CIOA—CIIA—FIIA                                                                                                               | -0.4(6)    | C6B—CIB—BIB—OIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -114.6 (4)           |
| C9A—C10A—C11A—F11A                                                                                                                | 179.9 (3)  | C2B—CIB—BIB—OIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.1 (4)             |
| FIOA—CIOA—CIIA—CI2A                                                                                                               | 179.5 (3)  | C6B—CIB—BIB—C/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5 (6)              |
| C9A—C10A—C11A—C12A                                                                                                                | -0.2 (6)   | C2B—CIB—BIB—C/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.2 (3)            |
| FI0B—CI0B—CIIB—FIIB                                                                                                               | -0.4(6)    | C6B—C1B—B1B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129.4 (4)            |
| C9B—C10B—C11B—F11B                                                                                                                | 179.5 (4)  | C2B—CIB—BIB—CI3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -60.9 (5)            |
| FI0B—CI0B—CIIB—CI2B                                                                                                               | 177.6 (3)  | C12B—C/B—B1B—O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-1^{\prime}/6.4(3)$ |
| C9B—C10B—C11B—C12B                                                                                                                | -2.5 (6)   | C8B—C7B—B1B—O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0 (5)              |
| F11A—C11A—C12A—F12A                                                                                                               | -0.9 (5)   | C12B—C7B—B1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68.0 (4)             |
| C10A—C11A—C12A—F12A                                                                                                               | 179.3 (3)  | C8B—C7B—B1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -108.6 (4)           |
| FIIA—CIIA—CI2A—C7A                                                                                                                | -179.0 (3) | C12B—C7B—B1B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -58.7 (4)            |
| C10A—C11A—C12A—C7A                                                                                                                | 1.2 (6)    | C8B—C7B—B1B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124.8 (4)            |
| C8A—C7A—C12A—F12A                                                                                                                 | -178.2 (3) | C14B—C13B—B1B—O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.0 (5)             |
| B1A—C7A—C12A—F12A                                                                                                                 | -0.8 (6)   | C18B—C13B—B1B—O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -132.5 (4)           |
| C8A—C7A—C12A—C11A                                                                                                                 | -0.2 (6)   | C14B—C13B—B1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160.6 (4)            |

| B1A—C7A—C12A—C11A | 177.2 (4) | C18B—C13B—B1B—C1B | -18.9 (5) |
|-------------------|-----------|-------------------|-----------|
| C8B—C7B—C12B—F12B | 178.8 (3) | C14B—C13B—B1B—C7B | -74.2 (4) |
| B1B-C7B-C12B-F12B | 1.9 (5)   | C18B—C13B—B1B—C7B | 106.3 (4) |

Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

## Hydrogen-bond geometry (Å, °)

Cg4, Cg7-Cg9 are the centroids of the C1B-C6B, C11S-C16S, C21S-C26S and C31S-C33S/C31S'-C31S' rings, respectively.

| <i>D</i> —H··· <i>A</i>                                  | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|----------------------------------------------------------|-------------|----------|--------------|---------|
| 01 <i>A</i> —H1 <i>A</i> …F8 <i>A</i>                    | 0.84        | 2.16     | 2.731 (3)    | 125     |
| O1 <i>B</i> —H1 <i>B</i> …N1 <i>D</i>                    | 0.84        | 2.12     | 2.846 (4)    | 144     |
| N2C—H2C…O1A                                              | 1.05 (4)    | 1.60 (4) | 2.632 (4)    | 169 (3) |
| N2D—H2D…O1B                                              | 0.80 (4)    | 1.76 (4) | 2.554 (5)    | 171 (4) |
| $C2C$ — $H2CB$ ····F8 $A^{i}$                            | 0.99        | 2.46     | 3.435 (5)    | 168     |
| C4C—H4CA····F6A <sup>iv</sup>                            | 0.99        | 2.40     | 3.191 (5)    | 137     |
| C5D—H5DC…F14B                                            | 0.98        | 2.54     | 3.284 (5)    | 133     |
| C32S—H32A…F10B <sup>v</sup>                              | 0.95        | 2.52     | 3.133 (5)    | 123     |
| C14S—H14 $A$ ··· $Cg$ 4 <sup>vi</sup>                    | 0.95        | 2.95     | 3.779 (5)    | 147     |
| C4D—H4DA····Cg7                                          | 0.99        | 2.73     | 3.620 (4)    | 150     |
| С6С—Н6СВ…Сд9                                             | 0.98        | 2.74     | 3.689 (4)    | 163     |
| С6 <i>С</i> —Н6 <i>СВ</i> ··· <i>Cg</i> 9 <sup>iii</sup> | 0.98        | 2.74     | 3.689 (4)    | 163     |

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*; (iii) -*x*+2, -*y*+2, -*z*+1; (iv) *x*+1, *y*, *z*; (v) *x*, *y*+1, *z*; (vi) *x*-1, *y*, *z*.