

ISSN 2414-3146

Received 9 November 2022 Accepted 10 November 2022

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; ester; ether.

CCDC reference: 2210835

Structural data: full structural data are available from iucrdata.iucr.org

Diethyl 4,4'-[octane-1,8-diylbis(oxy)]dibenzoate

Sultana Shakila Khan,^a Md. Belayet Hossain Howlader,^a* Ryuta Miyatake,^b Md. Chanmiya Sheikh^c and Ennio Zangrando^d

^aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, ^bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, ^cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and ^dDepartment of Chemical and Pharmaceutical Science, University of Trieste, Italy. *Correspondence e-mail: mbhhowlader@yahoo.com

The complete molecule of the title compound, $C_{26}H_{34}O_6$, is generated by a crystallographic centre of symmetry and the central octyl chain adopts an extended conformation. In the extended structure, weak $C-H\cdots\pi$ interactions link the molecules.

Structure description

Alkylbenzoates possess interesting physical properties and applications in industry. For example, 4-hydroxybenzoic acid and its esters are known as parabens (Giordano *et al.*, 1999; Yang *et al.*, 2014), and alkylbenzoates are used for preparing liquid crystalline compounds (Abser *et al.*, 1993), and non-linear optical materials (Perumal *et al.*, 2002). As part of our studies in this area, we now describe the synthesis and structure of the title compound, $C_{26}H_{34}O_6$ (Fig. 1).

The X-ray diffraction analysis revealed that the title molecule is centrosymmetric with the inversion center located in the middle of the alkyl chain. The mean plane through the non-hydrogen atoms indicates that they are almost coplanar with r.m.s. and maximum deviations of 0.101 and ± 0.151 (2) Å (exhibited by atom C6), respectively. The *n*-octyl alkyl chain exhibits an extended (all *anti*) conformation. The bond distances agree with those reported in similar compounds (Ma *et al.*, 2011, 2012; Shi *et al.*, 2014). The crystal packing shows the molecules connected by C3–H3A···· π and C12–H12B··· π interactions with H–ring centroid separations of 2.89 and 2.82 Å, respectively (Table 1, Fig. 2).

 $O\bar{R}TEP$ view (ellipsoids drawn at the 50% probability level) of the title molecule. C1' and unlabelled atoms are generated by the symmetry operation -x + 2, -y + 2, -z.

Synthesis and crystallization

A mixture of ethyl-4-hydroxybenzoate (8.3 g, 50 mmol) and 1,8-dibromo-octane (6.8 g, 25 mmol) in acetone (100 ml) was refluxed for 24 h over anhydrous potassium carbonate (13.8 g, 100 mmol). The solvent was removed under vacuum and the solid mass was dissolved in water and extracted with dichloromethane. Left overnight, a white precipitate formed, which was filtered off and washed with ethanol. The product was recrystallized from hot ethanol solution, resulting in colorless needle-shaped crystals suitable for X-ray diffraction. Yield: 9.6 g (86%), melting point: 372–373 K.

FT-IR (KBr), (cm⁻¹): 1707 ν (C=O_{ester}), 1606, 1580 ν (C=C_{aromatic}), 3072, 3052 ν (C-H_{aromatic}), 2914, 2942, 2874, 2858 ν (C-H_{aliphatic}).

¹H NMR (CDCl₃, 400 MHz), δ : 7.99 (d, 2 × 2H, J = 8.8 Hz, C-2,6,2['],6[']), 6.90 (d, 2 × 2H, J = 8.8 Hz, C-3,5,3['],5[']), 4.35 (q, 2 × 2H, OCH₂CH₃), 4.0 (t, 2 × 2H, J = 7.6 Hz, OCH₂CH₂), 1.81 (p,

Detail of the crystal packing showing the $C-H\cdots\pi$ interactions.

Table 1		
Hydrogen-bond geometry	(Å,	°).

Cg1 is the centroid of the C5-C10 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C3-H3A\cdots Cg1^{i}\\ C12-H12B\cdots Cg1^{ii} \end{array}$	0.99	2.89	3.728 (2)	143
	0.99	2.82	3.744 (2)	155

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

 Table 2

 Experimental details

Experimental details.	
Crystal data	
Chemical formula	$C_{26}H_{34}O_{6}$
$M_{ m r}$	442.53
Crystal system, space group	Triclinic, P1
Temperature (K)	173
a, b, c (Å)	6.6734 (5), 9.8044 (8), 10.5156 (7)
α, β, γ (°)	65.804 (5), 89.894 (6), 74.736 (5)
$V(Å^3)$	601.03 (8)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.29 \times 0.21 \times 0.06$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.506, 0.995
No. of measured, independent and	5815, 2739, 2065
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.164, 1.10
No. of reflections	2739
No. of parameters	146
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.48, -0.26

Computer programs: *RAPID-AUTO* (Rigaku, 2010), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2019/2* (Sheldrick, 2015*b*) and *DIAMOND* (Brandenburg & Putz, 1999).

 $2 \times 2H$, OCH₂CH₂), 1.5 (*p*, $2 \times 2H$, OCH₂CH₂CH₂), 1.41 (*p*, $2 \times 2H$, OCH₂CH₂CH₂CH₂CH₂), 1.40 (*t*, $2 \times 3H$, CH₃).

¹³C NMR (CDCl₃, 400 MHz), δ: 14.47 (2 C, CH₃), 26.00 (2 C, OCH₂CH₂CH₂CH₂), 29.17 (2 C, OCH₂CH₂CH₂), 29.33 (2 C, OCH₂CH₂), 60.67 (2 C, OCH₂CH₂), 68.13 (2 C, OCH₂CH₃), 122.78 (2 C, C-4,4'), 163 (2 C, C-1,1'), 114 (2 × 2 C, C-3,5,3',5'), 131.59 (2 × 2 C, C-2,6,2',6'), 166.51 (2 C, OCO)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MBHH is indebted to Rajshahi University for financial support. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

- Abser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062–1063.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). *J. Pharm. Sci.* 88, 1210– 1216.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ma, Z., Qin, H., Lai, G. & Fan, J. (2012). Acta Cryst. E68, 0714.
- Ma, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.
- Perumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200–205.
- Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8. Sheldrick, G. M. (2015*b*). Acta Cryst. C**71**, 3–8.
- Shi, H., Qin, H. & Ma, Z. (2014). Acta Cryst. E70, o552.
- Yang, H., Svärd, M., Zeglinski, J. & Rasmuson, Å. C. (2014). Cryst. Growth Des. 14, 3890–3902.

full crystallographic data

IUCrData (2022). 7, x221080 [https://doi.org/10.1107/S241431462201080X]

Diethyl 4,4'-[octane-1,8-diylbis(oxy)]dibenzoate

Sultana Shakila Khan, Md. Belayet Hossain Howlader, Ryuta Miyatake, Md. Chanmiya Sheikh and Ennio Zangrando

Diethyl 4,4'-[octane-1,8-diylbis(oxy)]dibenzoate

Crystal data

C₂₆H₃₄O₆ $M_r = 442.53$ Triclinic, P1 a = 6.6734(5) Å *b* = 9.8044 (8) Å c = 10.5156 (7) Å $\alpha = 65.804 (5)^{\circ}$ $\beta = 89.894 \ (6)^{\circ}$ $\gamma = 74.736 (5)^{\circ}$ V = 601.03 (8) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.506, \ T_{\rm max} = 0.995$ 5815 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.058$ H-atom parameters constrained $wR(F^2) = 0.164$ S = 1.10where $P = (F_0^2 + 2F_c^2)/3$ 2739 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 146 parameters $\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 1F(000) = 238 $D_{\rm x} = 1.223 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71075$ Å Cell parameters from 4497 reflections $\theta = 2.4 - 25.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KPlate, colorless $0.29 \times 0.21 \times 0.06 \text{ mm}$

2739 independent reflections 2065 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 12$

 $w = 1/[\sigma^2(F_0^2) + (0.0845P)^2 + 0.0881P]$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.50078 (18)	0.61698 (14)	0.26687 (11)	0.0379 (3)	
02	-0.15521 (19)	0.27118 (15)	0.20288 (12)	0.0448 (4)	
03	-0.13007 (18)	0.21468 (14)	0.43290 (12)	0.0373 (3)	
C1	0.9557 (3)	0.95272 (19)	0.06471 (16)	0.0340 (4)	
H1A	0.875445	1.023516	0.104138	0.041*	
H1B	1.073077	0.875112	0.136554	0.041*	
C2	0.8136 (2)	0.86753 (19)	0.03467 (16)	0.0331 (4)	
H2A	0.696733	0.944785	-0.037757	0.040*	
H2B	0.894056	0.795510	-0.003499	0.040*	
C3	0.7246 (3)	0.77505 (19)	0.16506 (16)	0.0341 (4)	
H3A	0.841692	0.697379	0.237046	0.041*	
H3B	0.645698	0.847111	0.203703	0.041*	
C4	0.5820 (3)	0.69140 (19)	0.13702 (16)	0.0335 (4)	
H4A	0.466187	0.766566	0.062869	0.040*	
H4B	0.660781	0.612463	0.105526	0.040*	
C5	0.3632 (2)	0.53601 (18)	0.26868 (16)	0.0306 (4)	
C6	0.3009 (3)	0.51230 (19)	0.15451 (16)	0.0338 (4)	
H6	0.354087	0.554669	0.067383	0.041*	
C7	0.1604 (3)	0.42621 (19)	0.16981 (17)	0.0340 (4)	
H7	0.118981	0.409221	0.092424	0.041*	
C8	0.0786 (2)	0.36409 (18)	0.29588 (16)	0.0301 (4)	
C9	0.1424 (2)	0.38832 (19)	0.40981 (16)	0.0319 (4)	
H9	0.088819	0.346062	0.496787	0.038*	
C10	0.2826 (3)	0.4731 (2)	0.39638 (16)	0.0339 (4)	
H10	0.324872	0.489132	0.474169	0.041*	
C11	-0.0794 (2)	0.28025 (18)	0.30258 (17)	0.0328 (4)	
C12	-0.2826 (3)	0.1275 (2)	0.45125 (18)	0.0373 (4)	
H12A	-0.225921	0.035401	0.431134	0.045*	
H12B	-0.413088	0.194284	0.387294	0.045*	
C13	-0.3244 (3)	0.0773 (2)	0.60203 (19)	0.0454 (5)	
H13A	-0.423756	0.015410	0.620866	0.054*	
H13B	-0.383525	0.169814	0.619571	0.054*	
H13C	-0.193089	0.014077	0.663841	0.054*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0408 (7)	0.0495 (7)	0.0316 (6)	-0.0276 (6)	0.0102 (5)	-0.0163 (5)
O2	0.0479 (8)	0.0588 (8)	0.0391 (7)	-0.0288 (6)	0.0045 (5)	-0.0236 (6)
O3	0.0362 (6)	0.0433 (7)	0.0389 (7)	-0.0228 (5)	0.0073 (5)	-0.0170 (5)
C1	0.0341 (9)	0.0348 (8)	0.0357 (9)	-0.0156 (7)	0.0060 (7)	-0.0141 (7)
C2	0.0322 (8)	0.0345 (8)	0.0354 (9)	-0.0159 (7)	0.0063 (6)	-0.0136 (7)
C3	0.0339 (9)	0.0361 (9)	0.0342 (9)	-0.0152 (7)	0.0060 (6)	-0.0137 (7)
C4	0.0327 (8)	0.0369 (9)	0.0330 (9)	-0.0176 (7)	0.0081 (6)	-0.0123 (7)
C5	0.0274 (8)	0.0324 (8)	0.0323 (8)	-0.0106 (6)	0.0023 (6)	-0.0128 (6)

data reports

C6	0.0358 (9)	0.0394 (9)	0.0280 (8)	-0.0151 (7)	0.0074 (6)	-0.0135 (7)
C7	0.0330 (9)	0.0394 (9)	0.0334 (9)	-0.0123 (7)	0.0022 (6)	-0.0181 (7)
C8	0.0273 (8)	0.0303 (8)	0.0335 (9)	-0.0096 (6)	0.0021 (6)	-0.0134 (6)
C9	0.0309 (8)	0.0377 (9)	0.0291 (8)	-0.0146 (7)	0.0061 (6)	-0.0131 (6)
C10	0.0331 (8)	0.0438 (9)	0.0300 (8)	-0.0167 (7)	0.0038 (6)	-0.0171 (7)
C11	0.0297 (8)	0.0322 (8)	0.0380 (9)	-0.0095 (7)	0.0039 (6)	-0.0159 (7)
C11	0.0297 (8)	0.0322 (8)	0.0380 (9)	$\begin{array}{c} -0.0095(7) \\ -0.0186(7) \\ -0.0260(9) \end{array}$	0.0039 (6)	-0.0159 (7)
C12	0.0331 (9)	0.0388 (9)	0.0466 (10)		0.0071 (7)	-0.0196 (7)
C13	0.0458 (11)	0.0490 (11)	0.0504 (11)		0.0160 (8)	-0.0223 (8)

Geometric parameters (Å, °)

O1—C5	1.3581 (18)	C5—C6	1.396 (2)
O1—C4	1.4421 (18)	C5—C10	1.402 (2)
O2—C11	1.2105 (19)	C6—C7	1.386 (2)
O3—C11	1.3403 (19)	С6—Н6	0.9500
O3—C12	1.4581 (18)	C7—C8	1.392 (2)
C1—C1 ⁱ	1.520 (3)	С7—Н7	0.9500
C1—C2	1.527 (2)	C8—C9	1.400 (2)
C1—H1A	0.9900	C8—C11	1.484 (2)
C1—H1B	0.9900	C9—C10	1.378 (2)
C2—C3	1.522 (2)	С9—Н9	0.9500
C2—H2A	0.9900	C10—H10	0.9500
C2—H2B	0.9900	C12—C13	1.505 (2)
C3—C4	1.508 (2)	C12—H12A	0.9900
С3—НЗА	0.9900	C12—H12B	0.9900
С3—Н3В	0.9900	C13—H13A	0.9800
C4—H4A	0.9900	C13—H13B	0.9800
C4—H4B	0.9900	C13—H13C	0.9800
C5—O1—C4	118.70 (12)	С7—С6—Н6	120.4
C11—O3—C12	116.54 (12)	С5—С6—Н6	120.4
C1 ⁱ —C1—C2	113.30 (16)	C6—C7—C8	121.54 (14)
C1 ⁱ —C1—H1A	108.9	С6—С7—Н7	119.2
C2—C1—H1A	108.9	С8—С7—Н7	119.2
C1 ⁱ —C1—H1B	108.9	C7—C8—C9	118.79 (14)
C2—C1—H1B	108.9	C7—C8—C11	118.64 (14)
H1A—C1—H1B	107.7	C9—C8—C11	122.51 (14)
C3—C2—C1	112.54 (13)	C10—C9—C8	120.34 (14)
С3—С2—Н2А	109.1	С10—С9—Н9	119.8
C1—C2—H2A	109.1	С8—С9—Н9	119.8
C3—C2—H2B	109.1	C9—C10—C5	120.44 (14)
C1—C2—H2B	109.1	C9—C10—H10	119.8
H2A—C2—H2B	107.8	C5-C10-H10	119.8
C4—C3—C2	113.26 (13)	O2—C11—O3	123.23 (15)
С4—С3—Н3А	108.9	O2—C11—C8	124.60 (15)
С2—С3—НЗА	108.9	O3—C11—C8	112.17 (13)
С4—С3—Н3В	108.9	O3—C12—C13	106.08 (14)
С2—С3—Н3В	108.9	O3—C12—H12A	110.5

НЗА—СЗ—НЗВ	107.7	C13—C12—H12A	110.5
O1—C4—C3	107.07 (12)	O3—C12—H12B	110.5
O1—C4—H4A	110.3	C13—C12—H12B	110.5
C3—C4—H4A	110.3	H12A—C12—H12B	108.7
O1—C4—H4B	110.3	С12—С13—Н13А	109.5
C3—C4—H4B	110.3	C12—C13—H13B	109.5
H4A—C4—H4B	108.6	H13A—C13—H13B	109.5
O1—C5—C6	124.62 (14)	C12—C13—H13C	109.5
O1—C5—C10	115.71 (13)	H13A—C13—H13C	109.5
C6—C5—C10	119.67 (14)	H13B—C13—H13C	109.5
C7—C6—C5	119.21 (14)		
C1 ⁱ —C1—C2—C3	-179.35 (16)	C11—C8—C9—C10	-177.00 (15)
C1—C2—C3—C4	179.44 (14)	C8—C9—C10—C5	-0.1 (2)
C5-01-C4-C3	178.54 (13)	O1—C5—C10—C9	-179.73 (14)
C2-C3-C4-O1	-176.76 (13)	C6—C5—C10—C9	0.0 (2)
C4—O1—C5—C6	3.3 (2)	C12—O3—C11—O2	0.8 (2)
C4	-176.98 (13)	C12—O3—C11—C8	-179.24 (13)
O1—C5—C6—C7	179.46 (15)	C7—C8—C11—O2	-5.7 (2)
C10—C5—C6—C7	-0.2 (2)	C9—C8—C11—O2	171.73 (16)
C5—C6—C7—C8	0.6 (2)	C7—C8—C11—O3	174.33 (13)
C6—C7—C8—C9	-0.7 (2)	C9—C8—C11—O3	-8.2 (2)
C6—C7—C8—C11	176.84 (14)	C11—O3—C12—C13	-175.71 (14)
C7—C8—C9—C10	0.4 (2)		

Symmetry code: (i) -x+2, -y+2, -z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C3—H3A···Cg1 ⁱⁱ	0.99	2.89	3.728 (2)	143
C12—H12 B ···Cg1 ⁱⁱⁱ	0.99	2.82	3.744 (2)	155

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.