

IUCrData

ISSN 2414-3146

Received 12 November 2022 Accepted 15 November 2022

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: zinc; crystal structure; 4-chloroterpyridine; triflate salt; octahedral; coordination complex.

CCDC reference: 2219916

Structural data: full structural data are available from iucrdata.iucr.org

Bis(4'-chloro-2,2':6',2"-terpyridine- $\kappa^3 N, N', N''$)zinc(II) bis(trifluoromethanesulfonate)

Rafael A. Adrian,^a* Sara J. Ibarra^a and Hadi D. Arman^b

^aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and ^bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA. *Correspondence e-mail: adrian@uiwtx.edu

In the title complex, $[Zn(C_{15}H_{10}ClN_3)_2](CF_3SO_3)_2$, the Zn^{II} metal center is sixfold coordinated by three nitrogen atoms of each 4-chloroterpyridine ligand in a distorted octahedral geometry with triflouromethanesulfonate ions completing the outer coordination sphere of the complex. π - π stacking interactions between the pyridyl rings in adjacent molecules contribute to the alignment of the complexes in layers along the *c* axis.

Structure description

Terpyridine and its substituted derivatives continue to be versatile chelating ligands with several applications in areas as diverse as catalysis (Rupp *et al.*, 2019; Kobayashi & Nakazawa, 2021), supramolecular design (Kuai *et al.*, 2019; Ma *et al.*, 2021), and drug design (Qin *et al.*, 2019; Savic *et al.*, 2020). Recently, zinc(II) terpyridine complexes with phenyl-based substituents in the 4'-position of the terpyridine ring have shown excellent anticancer activity against several human carcinoma cell lines (Li *et al.*, 2019). Our research group interest currently lies in synthesizing metal complexes with applications in biological systems; as part of our research in this area, herein, we describe the synthesis and structure of the title zinc(II) complex.

The asymmetric unit of the title complex shows the 4-chloroterpyridine ligands surrounding the zinc metal center, with two trifluorosulfonate ions in the outer coordination sphere. The zinc(II) atom lies in an octahedral geometry defined by six pyridine nitrogen atoms from the two 4-chloroterpyridine ligands (Fig. 1). All the Zn–N bond distances are in good agreement with comparable bis(4-chloroterpyridine)zinc(II) complexes currently available in the Cambridge Structural Database (CSD, Groom *et al.*, 2016; version 5.43 with update June 2022; refcodes MOZHAL and MOZHEP; You *et al.*, 2009), but differ, by more than 0.1 Å in most cases, from those observed in complexes

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

where only one 4-chloroterpyridine is coordinated to the zinc(II) metal center (Adrian & Arman, 2020; refcode JABDID; Adrian *et al.*, 2020; refcode PADBUV; Huang & Qian, 2008; refcode HIVPOS; Dutta *et al.*, 2019; refcode DOHJES). The N-Zn-N angles also concur with the values reported in the previously referenced bis(4-chloroterpyridine)zinc(II) complexes. All relevant bonds and angles are presented in Table 1.

Figure 2 Packing for the title complex; H atoms are omitted for clarity.

Table	1				
Selecte	d	geometric parameters	(Å	°)	

Sciected geometric parameters (A,).					
Zn1-N4	2.109 (5)	Zn1-N5	2.181 (6)		
Zn1-N1	2.079 (5)	Zn1-N6	2.163 (6)		
Zn1-N3	2.196 (6)	Zn1-N2	2.194 (6)		
N4-Zn1-N3	106.9 (2)	N1-Zn1-N2	75.1 (2)		
N4-Zn1-N5	74.8 (2)	N5-Zn1-N3	93.6 (2)		
N4-Zn1-N6	75.1 (2)	N5-Zn1-N2	94.0 (2)		
N4-Zn1-N2	102.3 (2)	N6-Zn1-N3	95.9 (2)		
N1-Zn1-N4	177.4 (2)	N6-Zn1-N5	149.97 (18)		
N1-Zn1-N3	75.7 (2)	N6-Zn1-N2	91.3 (2)		
N1-Zn1-N5	105.4 (2)	N2-Zn1-N3	150.86 (18)		
N1-Zn1-N6	104.5 (2)		. ,		

The packing diagram reveals the stacking of the asymmetric unit in alternating layers along the *c* axis (Fig. 2). π - π stacking interactions occur between the N5 and N6 pyridyl rings of adjacent molecules, with a centroid-to-centroid ($Cg \cdot \cdot Cg$) distance of 3.826 (4) Å and an offset distance of 1.379 (10) Å (Fig. 3). No other directional supramolecular interactions are present in the crystal packing of the title compound.

Synthesis and crystallization

Silver trifluoromethanesulfonate (0.377 g, 14.7 mmol) was added to an acetonitrile solution of zinc chloride (0.100 g, 7.34 mmol). The resulting solution was filtrated using a 0.45 mm PTFE syringe filter to remove silver chloride, and 4'-chloro-2,2':6',2''-terpyridine (0.393 g, 14.7 mmol) was added to yield the title compound. Crystals suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether over the resulting acetonitrile solution at 277 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was refined as a twocomponent twin with a final BASF parameter of 0.4619 (17).

Figure 3 Capped stick representation of the title molecule showing the π - π stacking interactions (red).

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$[Zn(C_{15}H_{10}ClN_3)_2](CF_3O_3S)_2$
M _r	898.93
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.9259 (2), 17.0711 (4), 22.0466 (5)
β (°)	90.287 (2)
$V(Å^3)$	3359.31 (13)
Ζ	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	4.46
Crystal size (mm)	$0.22 \times 0.07 \times 0.04$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.995, 0.999
No. of measured, independent and	8675, 8675, 8049
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.065
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.600
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.069, 0.145, 1.15
No. of reflections	8675
No. of parameters	497
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.93, -0.71

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio. **Funding information**

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032).

References

- Adrian, R. A. & Arman, H. D. (2020). IUCrData, 5, x201292.
- Adrian, R. A., Canales, D. & Arman, H. D. (2020). *IUCrData*, 5, x201344.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dutta, B., Das, D., Datta, J., Chandra, A., Jana, S., Sinha, C., Ray, P. P. & Mir, M. H. (2019). *Inorg. Chem. Front.* 6, 1245–1252.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Huang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64-76.
- Kobayashi, K. & Nakazawa, H. (2021). Chem. Asian J. 16, 3695-3701.
- Kuai, Y., Li, W., Dong, Y., Wong, W. Y., Yan, S., Dai, Y. & Zhang, C. (2019). Dalton Trans. 48, 15121–15126.
- Li, J., Liu, R., Jiang, J., Liang, X., Huang, L., Huang, G., Chen, H., Pan, L. & Ma, Z. (2019). *Molecules*, **24**, 4519.
- Ma, J., Lu, T., Duan, X., Xu, Y., Li, Z., Li, K., Shi, J., Bai, Q., Zhang, Z., Hao, X.-Q., Chen, Z., Wang, P. & Wang, M. (2021). Commun. Chem. 4, article number: 136 (2021).
- Qin, Q. P., Wang, Z. F., Wang, S. L., Luo, D. M., Zou, B. Q., Yao, P. F., Tan, M. X. & Liang, H. (2019). *Eur. J. Med. Chem.* **170**, 195–202.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rupp, M., Auvray, T., Rousset, E., Mercier, G. M., Marvaud, V., Kurth, D. G. & Hanan, G. S. (2019). *Inorg. Chem.* 58, 9127–9134.
- Savic, M., Arsenijevic, A., Milovanovic, J., Stojanovic, B., Stankovic, V., Rilak Simovic, A., Lazic, D., Arsenijevic, N. & Milovanovic, M. (2020). *Molecules*, 25, 4699.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- You, W., Huang, W., Fan, Y. & Yao, C. (2009). J. Coord. Chem. 62, 2125–2137.

full crystallographic data

IUCrData (2022). 7, x221096 [https://doi.org/10.1107/S2414314622010963]

Bis(4'-chloro-2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)zinc(II) bis(trifluoromethane-sulfonate)

Rafael A. Adrian, Sara J. Ibarra and Hadi D. Arman

Bis(4'-chloro-2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)zinc(II) bis(trifluoromethanesulfonate)

Crystal data

 $[Zn(C_{15}H_{10}ClN_3)_2](CF_3O_3S)_2$ $M_r = 898.93$ Monoclinic, $P2_1/c$ a = 8.9259 (2) Å b = 17.0711 (4) Å c = 22.0466 (5) Å $\beta = 90.287$ (2)° V = 3359.31 (13) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.145$ S = 1.158675 reflections 497 parameters 0 restraints Primary atom site location: dual F(000) = 1808 $D_x = 1.777 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 10902 reflections $\theta = 5.0-67.4^{\circ}$ $\mu = 4.46 \text{ mm}^{-1}$ T = 100 KNeedle, clear colourless $0.22 \times 0.07 \times 0.04 \text{ mm}$

 $T_{\min} = 0.995, T_{\max} = 0.999$ 8675 measured reflections
8675 independent reflections
8049 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.065$ $\theta_{\text{max}} = 67.8^{\circ}, \theta_{\text{min}} = 3.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -20 \rightarrow 20$ $l = -26 \rightarrow 26$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 25.P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.93$ e Å⁻³ $\Delta\rho_{min} = -0.71$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Zn1 0.73770 (11) 0.49335 (5) 0.28538 (3) 0.01471 (19) S1 1.0279 (2) 0.23997 (10) 0.39877 (7) 0.0239 (4) Cl2 0.7635 (3) 0.50475 (11) -0.01113 (6) 0.0255 (4) S2 0.5232 (3) 0.25502 (11) 0.60978 (8) 0.0295 (4) Cl1 0.7454 (3) 0.50507 (12) 0.58105 (6) 0.0373 (5) N4 0.7432 (7) 0.4932 (3) 0.1897 (2) 0.0153 (10) N1 0.7376 (8) 0.4982 (3) 0.3796 (2) 0.0180 (12)	
S11.0279 (2)0.23997 (10)0.39877 (7)0.0239 (4)Cl20.7635 (3)0.50475 (11)-0.01113 (6)0.0255 (4)S20.5232 (3)0.25502 (11)0.60978 (8)0.0295 (4)Cl10.7454 (3)0.50507 (12)0.58105 (6)0.0373 (5)N40.7432 (7)0.4932 (3)0.1897 (2)0.0153 (10)N10.7376 (8)0.4982 (3)0.3796 (2)0.0180 (12)	
Cl2 0.7635 (3) 0.50475 (11) -0.01113 (6) 0.0255 (4) S2 0.5232 (3) 0.25502 (11) 0.60978 (8) 0.0295 (4) Cl1 0.7454 (3) 0.50507 (12) 0.58105 (6) 0.0373 (5) N4 0.7432 (7) 0.4932 (3) 0.1897 (2) 0.0153 (10) N1 0.7376 (8) 0.4982 (3) 0.3796 (2) 0.0180 (12)	
S2 0.5232 (3) 0.25502 (11) 0.60978 (8) 0.0295 (4) C11 0.7454 (3) 0.50507 (12) 0.58105 (6) 0.0373 (5) N4 0.7432 (7) 0.4932 (3) 0.1897 (2) 0.0153 (10) N1 0.7376 (8) 0.4982 (3) 0.3796 (2) 0.0180 (12)	
Cli0.7454 (3)0.50507 (12)0.58105 (6)0.0373 (5)N40.7432 (7)0.4932 (3)0.1897 (2)0.0153 (10)N10.7376 (8)0.4982 (3)0.3796 (2)0.0180 (12)	
N40.7432 (7)0.4932 (3)0.1897 (2)0.0153 (10)N10.7376 (8)0.4982 (3)0.3796 (2)0.0180 (12)	
N1 0.7376 (8) 0.4982 (3) 0.3796 (2) 0.0180 (12)	
F1 0 9720 (6) 0 1766 (3) 0 50582 (18) 0 0368 (11)	
F3 $0.7919(6)$ $0.1670(3)$ $0.4403(2)$ $0.0482(14)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
N3 06338 (6) 03825 (3) 03132 (2) 00174 (12)	
F6 $0.5121 (6)$ $0.1630 (3)$ $0.51400 (19)$ $0.0411 (12)$	
N5 0.5255 (7) 0.5454 (3) 0.2570 (2) 0.0150 (11)	
F4 $0.4119(7)$ $0.1162(3)$ $0.5956(2)$ $0.0442(13)$	
N6 $0.9532(7)$ $0.4437(3)$ $0.2627(2)$ $0.0161(11)$	
F2 $0.8370(6)$ $0.2769(3)$ $0.4839(2)$ $0.0384(11)$	
$O_{12}^{(12)} = 0.0576(0)^{(12)} = 0.02769(0)^{(12)} = 0.0007(11)^{(12)}$	
N2 $0.8412(7)$ $0.6064(3)$ $0.3076(2)$ $0.0163(11)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H12 0.507101 0.312568 0.438778 0.024*	
C5 0.6718 (8) 0.4400 (4) 0.4114 (3) 0.0174 (13)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C20 0.8656 (8) 0.4685 (4) 0.1615 (3) 0.0162 (13)	
C28 1.2298 (8) 0.3884 (4) 0.2245 (3) 0.0212 (14)	
H28 1.322073 0.369520 0.211654 0.025*	
C29 1.1960 (7) 0.3915 (4) 0.2852 (3) 0.0189 (14)	
H29 1.265285 0.375202 0.314258 0.023*	
C24 0.2846 (8) 0.6020 (4) 0.2747 (3) 0.0229 (15)	
H24 0.213080 0.619438 0.302129 0.027*	
C16 0.6264 (8) 0.5214 (4) 0.1585 (3) 0.0165 (13)	
C17 0.6272 (8) 0.5258 (4) 0.0961 (3) 0.0175 (13)	
H17 0.545638 0.545277 0.074463 0.021*	
C1 0.7991 (8) 0.5595 (4) 0.4083 (3) 0.0185 (14)	
C6 0.8651 (8) 0.6192 (4) 0.3676 (3) 0.0160 (13)	
O3 1.0984 (9) 0.1662 (3) 0.3834 (3) 0.0455 (17)	
C22 0.3669 (8) 0.5775 (4) 0.1736 (3) 0.0180 (14)	
H22 0.349975 0.578390 0.131982 0.022*	
C15 0.5834 (8) 0.3253 (4) 0.2760 (3) 0.0187 (14)	
H15 0.605054 0.328322 0.234802 0.022*	
C26 0.9879 (8) 0.4410 (3) 0.2022 (3) 0.0139 (13)	
C9 0.9789 (8) 0.7236 (4) 0.2867 (3) 0.0196 (13)	
H91.0152820.7588180.2581900.023*	
C21 0.5004 (8) 0.5490 (4) 0.1966 (3) 0.0149 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C23	0.2574 (8)	0.6051 (4)	0.2134 (3)	0.0203 (13)
H23	0.167547	0.625130	0.198581	0.024*
C3	0.7381 (11)	0.5025 (5)	0.5027 (3)	0.0248 (16)
C11	0.6082 (8)	0.3759 (4)	0.3733 (3)	0.0171 (14)
C19	0.8777 (8)	0.4698 (4)	0.0988 (3)	0.0174 (13)
H19	0.962740	0.451617	0.079014	0.021*
C4	0.6738 (9)	0.4398 (4)	0.4739 (3)	0.0210 (15)
H4	0.632968	0.398490	0.495791	0.025*
C2	0.8041 (9)	0.5644 (4)	0.4712 (3)	0.0241 (16)
H2	0.848764	0.606471	0.491101	0.029*
C30	1.0565 (8)	0.4192 (4)	0.3022 (3)	0.0178 (14)
H30	1.033884	0.420937	0.343356	0.021*
C10	0.8965 (8)	0.6589 (4)	0.2685 (3)	0.0171 (13)
H10	0.878663	0.651626	0.227301	0.021*
C8	1.0062 (8)	0.7350 (4)	0.3471 (3)	0.0222 (15)
H8	1.063614	0.777259	0.360215	0.027*
C14	0.4998 (8)	0.2620 (4)	0.2971 (3)	0.0232 (15)
H14	0.465569	0.223332	0.270748	0.028*
C13	0.4697 (8)	0.2586 (4)	0.3584 (3)	0.0181 (14)
H13	0.411636	0.217943	0.373612	0.022*
C25	0.4210 (8)	0.5724 (4)	0.2951 (3)	0.0206 (14)
H25	0.440334	0.571281	0.336536	0.025*
C7	0.9467 (8)	0.6822 (4)	0.3889 (3)	0.0209 (15)
H7	0.961769	0.689324	0.430330	0.025*
05	0.6589 (7)	0.2185 (5)	0.6262 (3)	0.059 (2)
O4	0.5307 (13)	0.3215 (4)	0.5698 (3)	0.074 (3)
C27	1.1232 (8)	0.4142 (4)	0.1825 (3)	0.0192 (14)
H27	1.144398	0.413231	0.141203	0.023*
C31	0.9012 (9)	0.2133 (5)	0.4603 (3)	0.0294 (17)
C32	0.4313 (9)	0.1828 (5)	0.5623 (3)	0.0294 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0177 (4)	0.0154 (4)	0.0110 (3)	0.0014 (3)	-0.0032 (4)	0.0000 (3)
S 1	0.0294 (9)	0.0212 (9)	0.0211 (8)	-0.0002 (8)	-0.0055 (7)	-0.0027 (6)
Cl2	0.0317 (10)	0.0332 (9)	0.0115 (7)	0.0024 (8)	-0.0014 (7)	0.0009 (6)
S2	0.0413 (11)	0.0276 (10)	0.0195 (8)	-0.0150 (8)	-0.0009 (8)	-0.0006 (6)
Cl1	0.0641 (14)	0.0379 (10)	0.0099(7)	-0.0228 (10)	-0.0019 (9)	-0.0015 (6)
N4	0.012 (3)	0.017 (3)	0.017 (2)	0.000 (2)	-0.003 (2)	0.0054 (19)
N1	0.028 (3)	0.013 (2)	0.013 (2)	-0.001 (2)	-0.006 (3)	0.0007 (19)
F1	0.049 (3)	0.036 (3)	0.026 (2)	0.000(2)	-0.006(2)	0.0077 (17)
F3	0.056 (4)	0.050 (3)	0.039 (3)	-0.031 (3)	-0.014 (2)	0.011 (2)
C18	0.023 (3)	0.016 (3)	0.013 (3)	-0.003 (3)	-0.002 (3)	0.001 (2)
N3	0.014 (3)	0.015 (3)	0.023 (3)	0.003 (2)	-0.006(2)	-0.003 (2)
F6	0.054 (3)	0.045 (3)	0.025 (2)	-0.006 (3)	0.011 (2)	-0.0151 (19)
N5	0.017 (3)	0.012 (3)	0.016 (2)	0.001 (2)	0.000 (2)	0.0013 (18)
F4	0.064 (4)	0.027 (3)	0.043 (3)	-0.015 (2)	0.007 (3)	-0.0049 (19)

N6	0.019 (3)	0.015 (3)	0.014 (2)	-0.001 (2)	-0.002 (2)	-0.0011 (19)
F2	0.037 (3)	0.045 (3)	0.034 (2)	0.008 (2)	0.002 (2)	-0.0034 (19)
O6	0.047 (4)	0.025 (3)	0.019 (2)	0.000 (2)	-0.004 (2)	-0.0014 (19)
N2	0.020 (3)	0.016 (3)	0.012 (3)	0.005 (2)	0.000 (2)	0.0016 (19)
F5	0.049 (4)	0.076 (4)	0.061 (3)	0.022 (3)	-0.032 (3)	-0.030 (3)
01	0.036 (3)	0.034 (3)	0.030 (3)	0.000 (3)	-0.009 (2)	0.008 (2)
C12	0.027 (4)	0.016 (3)	0.015 (3)	0.000 (3)	-0.004 (3)	0.003 (2)
C5	0.013 (3)	0.018 (3)	0.021 (3)	-0.002 (3)	-0.004 (3)	0.003 (2)
O2	0.038 (3)	0.040 (4)	0.032 (3)	-0.019 (3)	-0.005 (3)	-0.001 (2)
C20	0.020 (4)	0.009 (3)	0.020 (3)	0.000 (3)	-0.003 (3)	-0.002 (2)
C28	0.021 (4)	0.019 (3)	0.024 (3)	0.002 (3)	-0.006 (3)	-0.002 (2)
C29	0.018 (3)	0.015 (3)	0.024 (3)	0.003 (3)	-0.006 (3)	-0.002 (3)
C24	0.016 (3)	0.020 (3)	0.033 (4)	0.002 (3)	0.006 (3)	0.000 (3)
C16	0.016 (3)	0.015 (3)	0.019 (3)	-0.004 (3)	-0.008 (3)	0.001 (2)
C17	0.017 (3)	0.017 (3)	0.018 (3)	0.001 (3)	-0.007 (3)	0.000(2)
C1	0.024 (4)	0.016 (3)	0.015 (3)	0.003 (3)	-0.002 (3)	0.001 (2)
C6	0.018 (3)	0.017 (3)	0.012 (3)	0.003 (3)	0.000(2)	0.000(2)
O3	0.072 (5)	0.028 (3)	0.036 (3)	0.022 (3)	0.002 (3)	-0.010 (2)
C22	0.019 (4)	0.015 (3)	0.019 (3)	0.002 (3)	0.000 (3)	0.000(2)
C15	0.025 (4)	0.015 (3)	0.016 (3)	0.005 (3)	-0.010 (3)	-0.004 (2)
C26	0.021 (3)	0.008 (3)	0.012 (3)	-0.002 (3)	-0.003 (3)	0.003 (2)
C9	0.017 (3)	0.016 (3)	0.025 (3)	0.004 (3)	0.003 (3)	0.006 (2)
C21	0.017 (3)	0.012 (3)	0.016 (3)	-0.001 (3)	0.002 (3)	0.000 (2)
C23	0.017 (3)	0.021 (3)	0.024 (3)	0.004 (3)	0.002 (3)	0.002 (3)
C3	0.036 (4)	0.027 (3)	0.012 (3)	-0.005 (3)	-0.001 (3)	-0.001 (2)
C11	0.019 (4)	0.014 (3)	0.018 (3)	0.001 (3)	-0.004 (3)	-0.002 (2)
C19	0.022 (4)	0.017 (3)	0.014 (3)	0.000 (3)	-0.002 (3)	-0.001 (2)
C4	0.024 (4)	0.022 (4)	0.018 (3)	-0.006 (3)	0.000 (3)	0.003 (3)
C2	0.037 (5)	0.020 (4)	0.016 (3)	-0.001 (3)	-0.003 (3)	-0.002 (2)
C30	0.023 (4)	0.017 (3)	0.013 (3)	0.001 (3)	-0.006 (3)	-0.002 (2)
C10	0.019 (4)	0.015 (3)	0.017 (3)	0.005 (3)	0.000 (3)	0.003 (2)
C8	0.014 (3)	0.017 (4)	0.035 (4)	0.000 (3)	-0.002 (3)	0.002 (3)
C14	0.027 (4)	0.016 (3)	0.027 (4)	0.003 (3)	-0.014 (3)	-0.006 (2)
C13	0.024 (3)	0.012 (3)	0.018 (3)	0.000 (3)	-0.001 (3)	0.004 (2)
C25	0.029 (4)	0.016 (3)	0.017 (3)	0.001 (3)	0.003 (3)	0.001 (2)
C7	0.028 (4)	0.018 (3)	0.017 (3)	0.001 (3)	-0.007 (3)	0.003 (2)
05	0.018 (3)	0.110 (7)	0.049 (4)	-0.002 (4)	-0.001 (3)	-0.025 (4)
O4	0.162 (9)	0.027 (3)	0.032 (3)	-0.033 (5)	0.030 (4)	0.004 (2)
C27	0.023 (4)	0.016 (3)	0.019 (3)	0.000 (3)	-0.003 (3)	0.001 (2)
C31	0.026 (4)	0.032 (4)	0.030 (4)	-0.007 (3)	-0.012 (3)	0.001 (3)
C32	0.029 (4)	0.032 (4)	0.027 (4)	-0.002 (3)	-0.002 (3)	-0.010 (3)

Geometric parameters (Å, °)

Zn1—N4	2.109 (5)	C20—C26	1.486 (9)	
Zn1—N1	2.079 (5)	C20—C19	1.387 (9)	
Zn1—N3	2.196 (6)	C28—H28	0.9300	
Zn1—N5	2.181 (6)	C28—C29	1.375 (10)	

Zn1—N6	2.163 (6)	C28—C27	1.396 (9)
Zn1—N2	2.194 (6)	C29—H29	0.9300
S1—O1	1.445 (6)	C29—C30	1.386 (10)
S1—O2	1.439 (6)	C24—H24	0.9300
S1—O3	1.449 (6)	C24—C23	1.373 (10)
S1—C31	1.827 (8)	C24—C25	1.391 (10)
Cl2—C18	1.730 (5)	C16—C17	1.378 (9)
\$2—06	1 428 (6)	C16-C21	1 483 (9)
S2-05	1.120(0) 1 408 (8)	C17—H17	0.9300
S2-03 S2-04	1.100 (0)	C1 - C6	1.482(9)
S2 C32	1.439(0) 1 810(8)	C1 = C0	1.402(9)
52 - 652	1.010 (0)	$C_1 = C_2$	1.389(9) 1.380(10)
N4 C20	1.726(0) 1.220(0)	$C_0 = C_1$	1.380 (10)
N4-C20	1.329(9) 1.326(0)	C_{22} $- \pi_{22}$	0.9300
N4	1.330 (9)	C_{22} C_{21}	1.381 (10)
NI-CS	1.353 (9)	$C_{22} = C_{23}$	1.398 (9)
NI-CI	1.339 (9)	CIS—HIS	0.9300
F1—C31	1.340 (9)	C15—C14	1.395 (10)
F3—C31	1.328 (9)	C26—C27	1.365 (10)
C18—C17	1.386 (10)	С9—Н9	0.9300
C18—C19	1.390 (10)	C9—C10	1.385 (10)
N3—C15	1.351 (8)	C9—C8	1.367 (10)
N3—C11	1.351 (9)	C23—H23	0.9300
F6—C32	1.333 (9)	C3—C4	1.369 (11)
N5—C21	1.352 (8)	C3—C2	1.398 (11)
N5—C25	1.339 (9)	C19—H19	0.9300
F4—C32	1.365 (10)	C4—H4	0.9300
N6C26	1.372 (8)	С2—Н2	0.9300
N6—C30	1.333 (9)	С30—Н30	0.9300
F2—C31	1.335 (9)	C10—H10	0.9300
N2—C6	1.355 (8)	C8—H8	0.9300
N2—C10	1.340 (8)	C8—C7	1.395 (10)
F5—C32	1.303 (10)	C14—H14	0.9300
C12—H12	0.9300	C14—C13	1.380 (10)
C12-C11	1,380(10)	C13—H13	0.9300
C12 $C13$	1 384 (10)	C25—H25	0.9300
C5-C11	1 490 (9)	С7—Н7	0.9300
C_{5}	1.130(9) 1.378(9)	C27—H27	0.9300
05-04	1.576 (9)	$C_2 / - 112 /$	0.9500
N4—Zn1—N3	106.9 (2)	C2—C1—C6	123.5 (6)
N4—Zn1—N5	74.8 (2)	N2—C6—C1	114.7 (6)
N4— $Zn1$ — $N6$	75.1 (2)	N2—C6—C7	122.6 (6)
N4—Zn1—N2	102.3 (2)	C7—C6—C1	122.7 (6)
N1—Zn1—N4	177.4(2)	C21—C22—H22	120.2
N1 - Zn1 - N3	75 7 (2)	$C_{21} - C_{22} - C_{23}$	119.6 (6)
N1 - 7n1 - N5	1054(2)	C23—C22—H22	120.2
N1 - 7n1 - N6	103.1(2) 104.5(2)	N3—C15—H15	118.9
N1 - Zn1 - N2	75 1 (2)	N3-C15-C14	122.3 (6)
N5-7n1-N3	93.6(2)	C14-C15-H15	118.0
	10.0 (4)		110.7

N5—Zn1—N2	94.0 (2)	N6-C26-C20	114.1 (6)
N6—Zn1—N3	95.9 (2)	C27—C26—N6	121.7 (6)
N6—Zn1—N5	149.97 (18)	C27—C26—C20	124.2 (5)
N6—Zn1—N2	91.3 (2)	С10—С9—Н9	120.4
N2—Zn1—N3	150.86 (18)	С8—С9—Н9	120.4
01-\$1-03	113.6 (4)	C8—C9—C10	119.2 (6)
01 - S1 - C31	102.6 (4)	N5-C21-C16	115.0 (6)
02-81-01	116.1 (4)	N5-C21-C22	121.0 (6)
02 - 51 - 03	115.6 (4)	C_{22} C_{21} C_{16}	124.0 (6)
02 - 81 - C31	103.2(3)	C_{24} C_{23} C_{22}	1190(7)
03 - 81 - C31	103.2(4)	C24—C23—H23	120.5
06-82-04	103.2(1) 112 7 (4)	$C^{22} - C^{23} - H^{23}$	120.5
06 - 52 - C32	103.3(4)	C4-C3-C11	119.8 (6)
05 - 52 - 06	105.5(4) 115.1(4)	C4 - C3 - C2	122 5 (6)
05-52-04	117.6 (6)	C_{2}^{-} C_{3}^{-} C_{11}^{-}	122.5(0) 117.6(6)
05 - 52 - 032	103.5(4)	N3_C11_C12	1222(6)
03 - 52 - 032	103.3(4)	N3 C11 C5	122.2(0) 1153(6)
$C_{1} = S_{2} = C_{32}$	101.9(4)	$C_{12} = C_{11} = C_{5}$	113.5(0)
$C_{20} = N_4 = C_{16}$	119.3(4) 120.0(5)	$C_{12} = C_{11} = C_{3}$	122.3 (0)
C_{20} N_{4} C_{10}	120.9(5)	$C_{10} = C_{10} = C_{10}$	121.9
C_{10} N_{1} Z_{n1}	119.5(5) 110.4(4)	$C_{20} = C_{19} = C_{18}$	121.0
$C_1 = N_1 = Z_{n_1}$	119.4(4)	$C_{20} = C_{19} = M_{19}$	121.9
C1 N1 C5	120.1(4) 120.5(5)	$C_3 = C_4 = 114$	121.1 1177(7)
$C_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	120.3(5) 118.8(6)	$C_3 = C_4 = C_3$	121.1
C17 - C18 - C12	110.0(0) 122.4(5)	C_{3} C_{4} C_{1} C_{2} C_{3}	121.1 116 1 (7)
$C_{1}^{-1} = C_{1}^{-1} = C_{1}^{-1}$	122.4(5)	C1 - C2 - C3	122.0
$C_{15} = C_{16} = C_{12}$	116.6(0) 126.4(5)	$C_1 = C_2 = H_2$	122.0
C_{15} N_{3} C_{11}	120.4(5)	N6 C30 C20	122.0
$C_{11} = N_3 = C_{11}$	110.0(0) 114.8(4)	N6 C30 H30	123.3 (0)
$C_{11} = N_5 = Z_{11}$	114.0(4)	C_{20} C_{30} H_{30}	118.3
C_{21} N_{5} Z_{n1}	110.1(5) 124.6(4)	$N_{2} = C_{10} = C_{0}$	122.0 (6)
$C_{25} = N_5 = C_{21}$	124.0(4) 110.3(6)	$N_2 = C_{10} = C_{9}$	122.9 (0)
$C_{25} = N_{5} = C_{21}$	119.3(0) 116.3(4)	C_{0} C_{10} H_{10}	118.5
$C_{20} = N_0 = Z_{11}$	110.3(4) 125.8(4)	$C_{0} = C_{10} = H_{110}$	120.5
$C_{30} = N_0 = Z_{11}$	123.8 (4)	$C_{9} = C_{8} = C_{7}$	120.3 110.0(7)
$C_{50} = 10 = C_{20}$	117.9(0) 115.1(4)	$C_{2} = C_{3} = C_{1}$	119.0 (7)
$C_0 = N_2 = Z_{\rm Pl}$	115.1(4) 126.0(4)	$C_{1} = C_{0} = 118$	120.3
$C_{10} = N_2 = C_6$	120.9(4)	$C_{13} = C_{14} = C_{15}$	121.1 117.8(6)
$C_{10} = 102 = C_{00}$	117.0 (0)	$C_{13} = C_{14} = C_{13}$	121.1
$C_{11} = C_{12} = C_{13}$	118 5 (6)	$C_{12} C_{13} H_{13}$	121.1
$C_{12} = C_{12} = C_{13}$	110.5 (0)	C_{12} C_{13} C_{13} C_{12}	119.0 120.5(7)
N1 C5 C11	120.7	C14 - C13 - C12	120.3 (7)
N1 = C5 = C4	114.5 (0)	N5 C25 C24	119.0
C_{4} C_{5} C_{11}	121.1(0) 124.4(6)	N5 C25 H25	122.3 (0)
N4-C20-C26	114.8 (5)	C_{24} C_{25} H_{25}	118.8
N4-C20-C19	122 1 (6)	$C_{1} = C_{2} = C_{12}$	118 7 (6)
C19 - C20 - C26	123.1 (6)	C6—C7—H7	120.7
C29—C28—H28	120.6	C8—C7—H7	120.7

$C_{29} - C_{28} - C_{27}$	1189(7)	C28—C27—H27	120.2
$C_{27} = C_{28} = H_{28}$	120.6	$C_{26} = C_{27} = C_{28}$	119.7 (6)
C_{28} C_{29} H_{29}	120.0	C26—C27—H27	120.2
$C_{28} = C_{29} = C_{30}$	118.6 (6)	$F_1 = C_{31} = S_1$	112.4 (6)
$C_{20} = C_{20} = C_{30}$	120.7	F_{3} _C_31_S1	112.4(0)
$C_{23} = C_{24} = H_{24}$	120.7	$F_{3} = C_{31} = F_{1}$	108.2(6)
$C_{23} = C_{24} = H_{24}$	120.0	$F_3 = C_3 I = F_1$	108.2(0)
$C_{25} = C_{24} = C_{25}$	110.0 (7)	$F_{2} = C_{21} = F_{2}$	107.5(7)
C25-C24-H24	120.0	$F_2 = C_3 I = S_1$	110.9(3)
N4-C16-C17	121.8 (7)	$F_2 = C_3 I = F_1$	100.8 (0)
N4—C16—C21	114.5 (5)	F6-C32-S2	112.9 (6)
C17—C16—C21	123.8 (6)	F6—C32—F4	106.8 (6)
C18—C17—H17	121.6	F4—C32—S2	108.3 (5)
C16—C17—C18	116.8 (6)	F5—C32—S2	113.9 (6)
С16—С17—Н17	121.6	F5—C32—F6	108.7 (6)
N1—C1—C6	114.5 (5)	F5—C32—F4	105.8 (7)
N1—C1—C2	122.0 (6)		
Zn1—N4—C20—C26	1.4 (7)	C16—N4—C20—C26	178.3 (5)
Zn1—N4—C20—C19	-177.6 (5)	C16—N4—C20—C19	-0.8 (10)
Zn1—N4—C16—C17	177.1 (5)	C17—C18—C19—C20	-1.1 (11)
Zn1—N4—C16—C21	-1.3 (8)	C17—C16—C21—N5	-175.0 (6)
Zn1—N1—C5—C11	1.6 (8)	C17—C16—C21—C22	4.1 (11)
Zn1—N1—C5—C4	177.8 (6)	C1—N1—C5—C11	179.9 (6)
Zn1—N1—C1—C6	-0.8 (9)	C1—N1—C5—C4	-3.9 (11)
Zn1—N1—C1—C2	-178.7 (6)	C1—C6—C7—C8	179.2 (7)
Zn1—N3—C15—C14	-170.6(5)	C6—N2—C10—C9	1.7 (10)
Z_{n1} N3 C11 C12	170 7 (5)	C6-C1-C2-C3	-1792(7)
$Z_{n1} = N_3 = C_{11} = C_5$	-74(8)	03 - 81 - C31 - F1	54 5 (6)
7n1 - N5 - C21 - C16	-3.7(7)	03 - 51 - C31 - F3	-669(7)
2n1 = N5 = C21 = C10 7n1 = N5 = C21 = C22	1771(5)	03 - 81 - 031 - F2	174.0(5)
Zn1 N5 C25 C24	-1772(5)	$C_{15} = N_3 = C_{11} = C_{12}$	-3.7(10)
2n1 - N5 - C25 - C24	-3.7(7)	C15 = N3 = C11 = C12	1781(6)
2 III - No - C20 - C20	3.7(7)	C15 - C14 - C12 - C12	-20(11)
2 m = N6 - C20 - C27	177.0(3)	C15 - C14 - C15 - C12	2.0(11)
$Z_{111} = N_0 = C_{50} = C_{29}$	-170.0(3)	$C_{20} = 10 = C_{30} = C_{29}$	-0.1(10)
$2 \prod_{n=1}^{n} N_2 = C_0 = C_1$	-7.7(7)	$C_{20} = C_{20} = C_{19} = C_{18}$	-1/7.8(0)
$Z_{11} = N_2 = C_0 = C_1$	1/1.2(5)	$C_{2} = C_{2} = C_{2} = C_{2}$	1.5(11)
$2n_1 - n_2 - c_{10} - c_{9}$	-1/0.5(5)	$C_{21} = N_{5} = C_{25} = C_{24}$	2.1 (10)
C12-C18-C17-C16	-1/9.4 (5)	C_{21} — C_{16} — C_{17} — C_{18}	178.0 (6)
Cl2—Cl8—Cl9—C20	1/8.9 (5)	C21—C22—C23—C24	-0.9 (10)
Cl1—C3—C4—C5	-179.5 (6)	C23—C24—C25—N5	-1.3(10)
Cl1—C3—C2—C1	178.6 (6)	C23—C22—C21—N5	1.7 (10)
N4—C20—C26—N6	1.6 (8)	C23—C22—C21—C16	-177.4 (6)
N4—C20—C26—C27	-179.1 (6)	C11—N3—C15—C14	3.2 (10)
N4—C20—C19—C18	1.1 (10)	C11—C12—C13—C14	1.4 (11)
N4—C16—C17—C18	-0.2 (10)	C11—C5—C4—C3	179.1 (7)
N4-C16-C21-N5	3.3 (8)	C19—C18—C17—C16	0.6 (11)
N4—C16—C21—C22	-177.5 (6)	C19—C20—C26—N6	-179.4 (6)
N1-C5-C11-N3	4.1 (9)	C19—C20—C26—C27	-0.1 (10)

N1-C5-C11-C12	-174.1 (7)	C4—C5—C11—N3	-172.0(7)
N1-C5-C4-C3	3.3 (12)	C4—C5—C11—C12	9.9 (11)
N1-C1-C6-N2	5.8 (9)	C4—C3—C2—C1	0.9 (13)
N1—C1—C6—C7	-173.1 (7)	C2-C1-C6-N2	-176.4 (7)
N1—C1—C2—C3	-1.4 (12)	C2-C1-C6-C7	4.8 (11)
N3-C15-C14-C13	-0.3 (10)	C2—C3—C4—C5	-1.8 (13)
N6-C26-C27-C28	0.3 (10)	C30—N6—C26—C20	179.4 (5)
O6—S2—C32—F6	-179.0 (6)	C30—N6—C26—C27	0.1 (9)
O6—S2—C32—F4	-60.9 (6)	C10—N2—C6—C1	179.1 (6)
O6—S2—C32—F5	56.5 (7)	C10—N2—C6—C7	-2.0 (10)
N2—C6—C7—C8	0.4 (11)	C10—C9—C8—C7	-1.7 (10)
O1—S1—C31—F1	172.7 (5)	C8—C9—C10—N2	0.1 (10)
O1—S1—C31—F3	51.3 (7)	C13—C12—C11—N3	1.5 (11)
O1—S1—C31—F2	-67.8 (5)	C13—C12—C11—C5	179.5 (7)
C5—N1—C1—C6	-179.1 (6)	C25—N5—C21—C16	176.9 (6)
C5—N1—C1—C2	2.9 (11)	C25—N5—C21—C22	-2.3 (9)
O2—S1—C31—F1	-66.3 (6)	C25—C24—C23—C22	0.7 (10)
O2—S1—C31—F3	172.3 (6)	O5—S2—C32—F6	-58.6 (7)
O2—S1—C31—F2	53.2 (6)	O5—S2—C32—F4	59.5 (6)
C20—N4—C16—C17	0.3 (10)	O5—S2—C32—F5	176.9 (7)
C20—N4—C16—C21	-178.1 (5)	O4—S2—C32—F6	63.9 (8)
C20—C26—C27—C28	-178.9 (6)	O4—S2—C32—F4	-178.0 (6)
C28—C29—C30—N6	-0.3 (10)	O4—S2—C32—F5	-60.6 (8)
C29—C28—C27—C26	-0.7 (10)	C27—C28—C29—C30	0.7 (10)