ISSN 2414-3146

Received 27 October 2022
Accepted 6 December 2022

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; imidazolium cations; hydrogen bonding.

CCDC reference: 2224817
Structural data: full structural data are available from iucrdata.iucr.org

2-Ethyl-4-methyl-1H-imidazol-3-ium bromide

Ray J. Butcher ${ }^{\text {a* }}$ and Andrew P. Purdy ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and ${ }^{\mathbf{b}}$ Chemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA.
*Correspondence e-mail: rbutcher99@yahoo.com

In the title molecular salt, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, the components are linked by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Br} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds into $C(8)$ chains of alternating cations and anions propagating in the b-axis direction; these chains are cross-linked in the c axis direction by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Structure description

The unique structure of imidazole, containing two N atoms in a five-membered ring, permits it to accept a proton on one of its N atoms to form a cation and simultaneously deliver another proton from the other N atom to a suitable acceptor. In fact, this sort of shuttling action has been proposed as part of the catalytic mechanism of a number of enzymes (Mikulski \& Silverman, 2010), and is consistent with the proton-conductivity properties of imidazole in the solid state where long hydrogen-bonded chains are present (Kawada et al., 1970). These moieties and their derivatives have been implicated in proton-coupled electron-transfer processes (Huynh \& Meyer, 2007; Onidas et al., 2010). Consequently, there have been many theoretical (Scheiner \& Yi, 1996; Kumar \& Venkatnathan, 2015) and structural studies (Purdy et al., 2007; Kim et al., 2016) investigating these species. In this paper, we report a crystal structure containing the 2-ethyl-4-methyl-1 H -imidazol-3-ium $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}\right)$cation. There have been four previous reports of structures containing this species (CSD refcode LEZSAL, Amanokura et al., 2007; POJFOL, Beckett et al., 2014; HOJJAT, Arici et al., 2014; UMALAX, Kazimierczuk et al., 2016).

The title salt, $\mathbf{1}$, crystallizes in the monoclinic space group $P 2_{1} / c$ with one ion pair in the asymmetric unit (Fig. 1) and consists of $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$cations and Br^{-}anions. The C 8 methyl group is close to coplanar with the imidazole ring $\left[\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8=-8.03(15)^{\circ}\right]$. Otherwise, the metrical parameters of the cation agree well with those observed in the other structures involving this species. In the extended structure, the component ions are

Figure 1
The molecular structure of $\mathbf{1}$ showing 30% displacement ellipsoids. The hydrogen bond is shown with a dashed line.
linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds (Table 1) into $C(8)(E t t e r$ et al., 1990) chains propagating in the b-axis direction. The chains are cross-linked in the c-axis direction by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Fig. 2).

Figure 2
Packing diagram of $\mathbf{1}$ viewed down [100] showing how the cations and anions are linked into $C(8)$ chains propagating in the b-axis direction.

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{Br}^{\mathrm{i}}$	$0.829(17)$	$2.446(17)$	$3.2490(9)$	$163.3(16)$
$\mathrm{N} 3-\mathrm{H} 3 N \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.780(16)$	$2.485(16)$	$3.2642(8)$	$176.6(16)$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.93	$3.7842(10)$	151
$\mathrm{C} 6-\mathrm{H} 6 C \cdots \mathrm{Br}^{\mathrm{ii}}$	0.98	3.08	$3.8349(11)$	135
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{Br}^{\text {iv }}$	0.99	2.93	$3.8771(11)$	161

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
M_{r}	191.08
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	$6.8432(6), 15.5962(13), 7.5748(7)$
$\beta\left({ }^{\circ}\right)$	$94.360(4)$
$V\left(\AA^{3}\right)$	$806.10(12)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	5.02
Crystal size (mm)	$0.25 \times 0.15 \times 0.15$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $(S A D A B S$; Krause $e t$
Absorption correction	al., 2015)
	$0.571,0.747$
$T_{\text {min }}, T_{\text {max }}$	$24466,3936,3324$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.027
$R_{\text {int }}$	0.836
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.019,0.042,1.03$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	3936
No. of reflections	92
No. of parameters	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.53,-0.36$

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick 2008).

Synthesis and crystallization

The title compound resulted from an attempt to link two 2-ethyl-4-methylimidazole rings with a two-carbon chain by the reaction of 2-Et-4-Me-imidazole $(6.20 \mathrm{~g}, 56.3 \mathrm{mmol})$ with $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}(5.32 \mathrm{~g}, 28.3 \mathrm{mmol})$ in EtOH at $80^{\circ} \mathrm{C}$ overnight and several hours at $100^{\circ} \mathrm{C} . \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \quad(8.95 \mathrm{~g}$, 28.3 mmol) was added with ethanol and water and heated to dissolve. On cooling, the mixture was rotovapped down and extracted between water and ether, and the ether layer was evaporated down to 3.1 g of an oil identified as primarily the starting imidazole by NMR. Recovery of about half of the starting imidazole must mean that the oligomer forms preferentially over the dimer. The barium ion was removed from the water layer by titration with $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by filtration. The solution was rotovapped down to an oil that precipitated a mass of salts on cooling. More crystals of $\mathbf{1}$
crystallized from the oil over time, and were washed with i - PrOH to remove the oil for NMR. NMR of $\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}$, DSS ref: ${ }^{1} \mathrm{H}, 1.26(t, 3 \mathrm{H}), 2.88(q, 2 \mathrm{H})(\mathrm{Et}), 2.20(s, 3 \mathrm{H})(\mathrm{Me}), 4.70$ $(s, 1 \mathrm{H})(\mathrm{C}-\mathrm{H}), 6.95(s, 2 \mathrm{H})(\mathrm{N}-\mathrm{H}) ;{ }^{13} \mathrm{C}, 11.8(\mathrm{Me}), 13.3,21.8$ (Et), 117.1 (C-H), 131.4 (4-C), 150.7 (2-C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

References

Amanokura, N., Kaneko, M., Sahara, T. \& Sato, R. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, X21-X22.
Arıcı, M., Yeşilel, O. Z., Yeşilöz, Y. \& Şahin, O. (2014). J. Solid State Chem. 220, 70-78.
Beckett, M., Horton, P., Hursthouse, M. \& Timmis, J. (2014). Polyhedron, 77, 96-102.

Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Huynh, M. H. V. \& Meyer, T. J. (2007). Chem. Rev. 107, 5004-5064.
Kawada, A., McGhie, A. R. \& Labes, M. M. J. (1970). J. Chem. Phys. 52, 3121-3125.
Kazimierczuk, K., Dołęga, A. \& Wierzbicka, J. (2016). Polyhedron, 115, 9-16.
Kim, H. S., Eom, D., Koo, Y. \& Yingling, Y. G. (2016). Phys. Chem. Chem. Phys. 18, 22062-22069.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Kumar, M. \& Venkatnathan, A. (2015). J. Phys. Chem. B, 119, 32133222.

Mikulski, R. L. \& Silverman, D. N. (2010). Biochim. Biophys. Acta, 1804, 422-426.
Onidas, D., Stachnik, J. M., Brucker, S., Krätzig, S. \& Gerwert, K. (2010). Eur. J. Cell Biol. 89, 983-989.

Purdy, A. P., Gilardi, R., Luther, J. \& Butcher, R. J. (2007). Polyhedron, 26, 3930-3938.
Scheiner, S. \& Yi, M. (1996). J. Phys. Chem. 100, 9235-9241.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2022). 7, x221172 [https://doi.org/10.1107/S2414314622011725]

2-Ethyl-4-methyl-1H-imidazol-3-ium bromide

Ray J. Butcher and Andrew P. Purdy

2-Ethyl-4-methyl-1H-imidazol-3-ium bromide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=191.08$
Monoclinic, $P 2{ }_{1} / c$
$a=6.8432$ (6) \AA
$b=15.5962(13) \AA$
$c=7.5748$ (7) \AA
$\beta=94.360(4)^{\circ}$
$V=806.10(12) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min }=0.571, T_{\text {max }}=0.747$
24466 measured reflections

$$
\begin{aligned}
& F(000)=384 \\
& D_{\mathrm{x}}=1.574 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9911 \text { reflections } \\
& \theta=3.0-36.4^{\circ} \\
& \mu=5.02 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.25 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

3936 independent reflections
3324 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=36.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-26 \rightarrow 26$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.042$
$S=1.03$
3936 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: mixed
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0166 P)^{2}+0.2838 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.53$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.36$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were located in difference Fourier maps and those attached to N were refined isotropically. Those attached to carbon atoms were refined in idealized geometry using a riding model with with atomic displacement parameters of $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ [for $\left.\mathrm{CH}_{3}, 1.5 U_{\mathrm{eq}}(\mathrm{C})\right]$ with $\mathrm{C}-\mathrm{H}$ distances of 0.95 to $0.99 \AA$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br	$0.28697(2)$	$0.12428(2)$	$0.15497(2)$	$0.01551(3)$
N 1	$0.63750(12)$	$0.41897(5)$	$0.31428(11)$	$0.01531(14)$
H 1 N	$0.631(3)$	$0.4721(11)$	$0.314(2)$	$0.037(5)^{*}$
C 2	$0.49850(13)$	$0.36487(6)$	$0.25237(11)$	$0.01449(16)$
N 3	$0.56746(12)$	$0.28564(5)$	$0.28135(11)$	$0.01568(13)$
H3N	$0.503(2)$	$0.2457(9)$	$0.254(2)$	$0.026(4)^{*}$
C4	$0.75365(14)$	$0.28880(6)$	$0.36671(13)$	$0.01609(15)$
C5	$0.79682(13)$	$0.37312(6)$	$0.38762(13)$	$0.01694(15)$
H5A	0.914514	0.396452	0.442412	0.020^{*}
C6	$0.86990(17)$	$0.21085(7)$	$0.41511(15)$	$0.02302(19)$
H6A	0.793013	0.172611	0.485620	0.035^{*}
H6B	0.990828	0.227271	0.484469	0.035^{*}
H6C	0.902634	0.181162	0.307207	0.035^{*}
C7	$0.30245(14)$	$0.38674(7)$	$0.16718(13)$	$0.01933(17)$
H7A	0.201752	0.353879	0.225655	0.023^{*}
H7B	0.296411	0.368801	0.041511	0.023^{*}
C8	$0.25416(18)$	$0.48149(8)$	$0.17584(17)$	$0.0284(2)$
H8A	0.120458	0.491216	0.123853	0.043^{*}
H8B	0.346648	0.514173	0.109621	0.043^{*}
H8C	0.264154	0.500287	0.299648	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.01508(4)$	$0.01385(4)$	$0.01734(4)$	$0.00039(3)$	$-0.00055(3)$	$-0.00153(3)$
N 1	$0.0149(3)$	$0.0141(3)$	$0.0167(3)$	$-0.0012(3)$	$-0.0004(3)$	$-0.0013(3)$
C 2	$0.0152(4)$	$0.0147(4)$	$0.0135(3)$	$-0.0015(3)$	$0.0006(3)$	$-0.0010(3)$
N 3	$0.0159(3)$	$0.0150(3)$	$0.0162(3)$	$-0.0026(3)$	$0.0014(3)$	$-0.0022(3)$
C 4	$0.0150(4)$	$0.0173(4)$	$0.0160(4)$	$0.0012(3)$	$0.0015(3)$	$-0.0011(3)$
C 5	$0.0131(3)$	$0.0187(4)$	$0.0188(4)$	$-0.0006(3)$	$-0.0001(3)$	$-0.0023(3)$
C 6	$0.0240(5)$	$0.0210(4)$	$0.0244(5)$	$0.0076(4)$	$0.0038(4)$	$0.0006(4)$
C 7	$0.0166(4)$	$0.0238(4)$	$0.0168(4)$	$-0.0007(3)$	$-0.0036(3)$	$-0.0005(3)$
C 8	$0.0238(5)$	$0.0265(5)$	$0.0331(6)$	$0.0058(4)$	$-0.0089(4)$	$0.0014(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 2$	$1.3299(12)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 5$	$1.3844(13)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9800
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.829(17)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{N} 3$	$1.3351(12)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.5167(16)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.4836(13)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{~N} 3-\mathrm{C} 4$	$1.3851(12)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{~N} 3-\mathrm{H} 3 \mathrm{~N}$	$0.780(16)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9800
$\mathrm{C} 4-\mathrm{C} 5$	$1.3545(14)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9800
$\mathrm{C} 4-\mathrm{C} 6$	$1.4836(14)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9800

$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9500
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$109.52(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$126.7(12)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$123.7(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$107.15(8)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	$127.33(8)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 7$	$125.52(8)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$110.17(8)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$120.7(12)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$129.1(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$105.90(8)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$	$131.20(10)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 6$	$122.89(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$107.24(8)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	126.4
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	126.4
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	$-1.28(10)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$178.55(9)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$1.11(10)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.73(9)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 6$	$-0.50(11)$
	$-179.27(9)$

H6A-C6-H6B	109.5
C4-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
C2-C7-C8	$113.45(8)$
C2-C7-H7A	108.9
C8-C7-H7A	108.9
C2-C7-H7B	108.9
C8-C7-H7B	108.9
H7A-C7-H7B	107.7
C7-C8-H8A	109.5
C7-C8-H8B	109.5
H8A-C8-H8B	109.5
C7-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
N3-C4-C5-N1	$-0.29(11)$
C6-C4-C5-N1	$178.35(10)$
C2-N1-C5-C4	$0.98(11)$
N1-C2-C7-C8	$-8.03(15)$
N3-C2-C7-C8	$171.77(10)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{Br}^{\mathrm{i}}$	$0.829(17)$	$2.446(17)$	$3.2490(9)$	$163.3(16)$
$\mathrm{N} 3 — \mathrm{H} 3 N \cdots \mathrm{Br}$	$0.780(16)$	$2.485(16)$	$3.2642(8)$	$176.6(16)$
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.93	$3.7842(10)$	151
$\mathrm{C} 6 — \mathrm{H} 6 C \cdots \mathrm{Br}^{\mathrm{iii}}$	0.98	3.08	$3.8349(11)$	135
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots \mathrm{Br}^{\mathrm{iv}}$	0.99	2.93	$3.8771(11)$	161

[^0]
[^0]: Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $x+1,-y+1 / 2, z+1 / 2$; (iii) $x+1, y, z$; (iv) $x,-y+1 / 2, z-1 / 2$.

