

IUCrData

ISSN 2414-3146

Received 23 September 2022 Accepted 30 November 2022

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; silver(I) complex; p-tolyl phosphine.

CCDC reference: 2223249

Structural data: full structural data are available from iucrdata.iucr.org

data reports

(Nitrito- $\kappa^2 O, O'$)bis[tris(4-methylphenyl)phosphane- κP]silver(l)

Frederick P. Malan,^a Kariska Potgieter^b and Reinout Meijboom^{b*}

^aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, and ^bDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa. *Correspondence e-mail: rmeijboom@uj.ac.za

The molecular structure of the title compound, $[Ag(NO_2)(C_{21}H_{21}P)_2]$, exhibits a pseudo-tetrahedral coordination around the central Ag^I atom. The compound crystallizes with one molecule in the asymmetric unit in the monoclinic space group P_{2_1}/n with a rather long *b* axis [33.8752 (2) Å]. Weak C-H···O and C-H···N interactions consolidate the crystal packing. The nitrite-O atoms each occupy a single position in the coordination geometry.

Structure description

Silver is oligodynamic as a result of its excellent antimicrobial, antibacterial and anticancer properties (Meijboom *et al.*, 2009). Continuous development of phosphine silver(I) complexes has resulted in this class of compounds being evaluated against numerous cancer cell lines (Potgieter *et al.*, 2016). In this context, we report another phosphine silver(I) complex with nitrite as a co-ligand.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one complex molecule, featuring a central Ag^{I} atom, two tris-*p*-tolylphosphine ligands, and one chelating nitrito ligand. Minor differences in the two Ag-P bond lengths are observed [Ag1-P1 = 2.4287 (5) Å; Ag1-P2 = 2.4570 (5) Å]. The nitrito ligand coordinates in a near symmetric fashion with similar bond lengths [Ag1-O1 = 2.4125 (19) Å; Ag1-O2 = 2.4227 (16) Å; N1-O1 = 1.249 (3) Å; N1-O2 = 1.233 (3) Å]. The pseudo-tetrahedral coordination environment exhibited around the Ag^{I} atom stems from the three coordinating ligands, with corresponding bond angles of P1-Ag1-P2 [124.597 (16)°], P1-Ag1-O1 [116.26 (6)°], P1-Ag1-O2 [125.62 (4)°], P2-Ag1-O1 [107.68 (7)°], and P2-Ag1-O2 [107.83 (4)°]. The bidentate coordination of the nitrito ligand is underpinned by the O1-Ag1-O2 bite angle of 50.80 (7)°. The *ipso*-aryl carbon atoms of each of the phosphine ligands overlap in a near-staggered fashion when viewed

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C28-H28B\cdots O2^{i}$ $C42-H42B\cdots N1^{ii}$	0.98	2.34	3.292 (3)	165
	0.98	2.52	3.491 (4)	170

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, y, z - 1.

down the P1-Ag1-P2 axis, presumably due to the steric effect of the bulky phosphine ligands. Corresponding torsion angles are P2-Ag1-P1-C1 = 9.90 (7)°, P2-Ag1-P1-C8 = $-108.02 (8)^\circ$, P2-Ag1-P1-C15 = 128.73 (9)°, P1-Ag1-P2-C22 = $-172.57 (7)^\circ$, P1-Ag1-P2-C36 = $70.75 (8)^\circ$, and P1-Ag1-P2-C29 = $-47.35 (7)^\circ$. All of the aforementioned bond lengths and angles closely correspond to those of related Ag^I phosphine complexes (Meijboom *et al.*, 2009).

The complex packs in three dimensions as ribbons of isolated molecular complexes. The molecular packing is consolidated through weak intermolecular $C-H\cdots O$ and $C-H\cdots N$ interactions (Fig. 2, Table 1) involving methyl donor groups and the N and O atom of the nitrito ligand as acceptor atoms; π -stacking interactions are not observed.

Synthesis and crystallization

Tris-*p*-tolylphosphine (2 mmol) and silver nitrite (1 mmol) were dissolved separately in acetonitrile (10 ml). The two solutions were carefully mixed together and heated to 353 K for approximately 2 h. The solution was left to crystallize, and small clear colourless crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

Perspective view of the molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

Experimental details.	
Crystal data	
Chemical formula	$[Ag(NO_2)(C_2 H_2 P)_2]$
M ₋	762.57
Crystal system, space group	Monoclinic. $P2_1/n$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.8253 (1), 33.8752 (2), 11.3921 (1)
β (°)	116.880 (1)
$V(Å^3)$	3726.22 (6)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	5.43
Crystal size (mm)	$0.21 \times 0.15 \times 0.12$
Data collection	
Diffractometer	AtaLAB Synergy R, Dw system, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.524, 1.000
No. of measured, independent and $happendent = 2\pi (D)$ reflections	46007, 7335, 7025
observed $[I > 2o(I)]$ reflections	0.027
K_{int}	0.057
$(\sin \theta / \lambda)_{max} (A)$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.066, 1.03
No. of reflections	7335
No. of parameters	439
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.45, -0.55

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

Table 0

We greatly acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Figure 2

Packing diagram viewed along the *a* axis indicating two non-classical C- $H \cdots N$ and C- $H \cdots O$ hydrogen bonds as cyan dotted lines.

- Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.
- Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, **453**, 443–451.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan. Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2022). 7, x221148 [https://doi.org/10.1107/S2414314622011488]

(Nitrito- $\kappa^2 O, O'$)bis[tris(4-methylphenyl)phosphane- κP]silver(I)

F(000) = 1576

 $\theta = 2.6-78.9^{\circ}$ $\mu = 5.43 \text{ mm}^{-1}$

Block, colourless

 $0.21 \times 0.15 \times 0.12 \text{ mm}$

 $T_{\rm min} = 0.524, T_{\rm max} = 1.000$

 $\theta_{\text{max}} = 72.1^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$

46007 measured reflections

7335 independent reflections 7025 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.037$

 $h = -13 \rightarrow 13$

 $k = -33 \rightarrow 41$ $l = -13 \rightarrow 14$

 $D_{\rm x} = 1.359 {\rm Mg} {\rm m}^{-3}$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 37839 reflections

Frederick P. Malan, Kariska Potgieter and Reinout Meijboom

(Nitrito- $\kappa^2 O, O'$)bis[tris(4-methylphenyl)phosphane- κP]silver(I)

Crystal data

[Ag(NO₂)(C₂₁H₂₁P)₂] $M_r = 762.57$ Monoclinic, $P2_1/n$ a = 10.8253 (1) Å b = 33.8752 (2) Å c = 11.3921 (1) Å $\beta = 116.880$ (1)° V = 3726.22 (6) Å³ Z = 4

Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0325P)^2 + 2.634P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
7335 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
439 parameters	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta ho_{ m min}$ = -0.55 e Å ⁻³
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Ag1	0.65533 (2)	0.63978 (2)	0.42841 (2)	0.02180 (5)	
P1	0.77595 (5)	0.57779 (2)	0.44820 (5)	0.02163 (10)	
P2	0.65036 (5)	0.69483 (2)	0.28591 (4)	0.01930 (10)	
02	0.57699 (19)	0.66458 (5)	0.58283 (16)	0.0448 (4)	
C29	0.81563 (18)	0.70936 (5)	0.29381 (18)	0.0199 (4)	
C2	1.0300 (2)	0.57988 (6)	0.43210 (18)	0.0244 (4)	
H2	1.0744	0.5726	0.5224	0.029*	
C25	0.44352 (19)	0.80859 (5)	0.34053 (19)	0.0235 (4)	
C1	0.8860 (2)	0.58141 (5)	0.36531 (18)	0.0220 (4)	
C36	0.54431 (19)	0.68106 (5)	0.11468 (18)	0.0210 (4)	
C26	0.52576 (19)	0.78451 (6)	0.44557 (19)	0.0244 (4)	
H26	0.5396	0.7912	0.5316	0.029*	
C22	0.57132 (18)	0.74079 (5)	0.30246 (18)	0.0204 (4)	
C37	0.5988 (2)	0.67381 (6)	0.02701 (19)	0.0252 (4)	
H37	0.6954	0.6768	0.0553	0.030*	
C27	0.58811 (19)	0.75088 (6)	0.42752 (18)	0.0228 (4)	
H27	0.6426	0.7346	0.5007	0.027*	
C15	0.8942 (2)	0.55952 (6)	0.61134 (18)	0.0228 (4)	
C23	0.49327 (19)	0.76552 (5)	0.19701 (18)	0.0223 (4)	
H23	0.4833	0.7596	0.1117	0.027*	
C3	1.1093 (2)	0.58891 (6)	0.3678 (2)	0.0281 (4)	
Н3	1.2075	0.5882	0.4153	0.034*	
C8	0.6598 (2)	0.53656 (6)	0.37059 (19)	0.0255 (4)	
C24	0.42994 (19)	0.79888 (5)	0.21635 (19)	0.0245 (4)	
H24	0.3764	0.8154	0.1435	0.029*	
C40	0.3180 (2)	0.66502 (6)	-0.0583 (2)	0.0295 (4)	
H40	0.2212	0.6624	-0.0871	0.035*	
C39	0.3715 (2)	0.65788 (6)	-0.14628 (19)	0.0257 (4)	
C30	0.93294 (19)	0.68737 (6)	0.37074 (18)	0.0235 (4)	
H30	0.9262	0.6656	0.4202	0.028*	
C34	0.8276 (2)	0.74140 (6)	0.2224 (2)	0.0283 (4)	
H34	0.7484	0.7568	0.1699	0.034*	
01	0.4291 (2)	0.63526 (8)	0.4201 (2)	0.0757 (7)	
C38	0.5131 (2)	0.66231 (6)	-0.10136 (19)	0.0279 (4)	
H38	0.5522	0.6574	-0.1597	0.033*	
C5	0.9032 (2)	0.59927 (6)	0.16815 (19)	0.0288 (4)	
H5	0.8589	0.6050	0.0767	0.035*	
C31	1.0598 (2)	0.69698 (6)	0.37583 (19)	0.0285 (4)	
H31	1.1391	0.6816	0.4282	0.034*	
C4	1.0474 (2)	0.59896 (6)	0.2356 (2)	0.0277 (4)	
C16	0.9020 (2)	0.52008 (6)	0.6477 (2)	0.0289 (4)	
H16	0.8397	0.5015	0.5877	0.035*	
C9	0.5328 (2)	0.53614 (6)	0.3729 (2)	0.0296 (4)	
H9	0.5054	0.5582	0.4072	0.035*	
C20	0.9859 (2)	0.58611 (6)	0.7025 (2)	0.0298 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

1120	0.0001	0.6124	0.0010	0.000
H20	0.9801	0.6134	0.6810	0.036*
C41	0.4026 (2)	0.67585 (6)	0.0705 (2)	0.0286 (4)
H41	0.3637	0.6798	0.1295	0.034*
N1	0.4549 (3)	0.65427 (8)	0.5226 (3)	0.0564 (6)
C6	0.8232 (2)	0.59131 (6)	0.23182 (19)	0.0270 (4)
H6	0.7251	0.5926	0.1845	0.032*
C32	1.0722 (2)	0.72882 (6)	0.30523 (19)	0.0276 (4)
C33	0.9545 (2)	0.75080 (6)	0.2280 (2)	0.0302 (4)
H33	0.9614	0.7725	0.1786	0.036*
C28	0.3653 (2)	0.84282 (6)	0.3593 (2)	0.0340 (5)
H28A	0.3499	0.8380	0.4365	0.051*
H28B	0.2759	0.8456	0.2811	0.051*
H28C	0.4193	0.8671	0.3725	0.051*
C19	1.0855 (2)	0.57326 (7)	0.8241 (2)	0.0352 (5)
H19	1.1491	0.5917	0.8837	0.042*
C17	0.9994 (2)	0.50771 (6)	0.7705 (2)	0.0349 (5)
H17	1.0019	0.4807	0.7941	0.042*
C18	1.0939 (2)	0.53389(7)	0.8601 (2)	0.0353 (5)
C10	0.4457 (2)	0.50374 (7)	0.3256 (2)	0.0355 (5)
H10	0.3595	0.5038	0.3287	0.043*
C13	0.6959 (2)	0.50441 (6)	0.3161 (2)	0.0363 (5)
H13	0.7814	0.5045	0.3116	0.044*
C11	0.4816 (2)	0.47134 (7)	0.2740 (2)	0.0381 (5)
C42	0.2782(2)	0.64668 (7)	-0.2869(2)	0.0362(5)
H42A	0.2573	0.6184	-0.2918	0.054*
H42R	0.3248	0.6525	-0.3414	0.054*
H42C	0.1920	0.6618	-0.3191	0.054*
C12	0.1920 0.6074 (3)	0.0010 0.47235(7)	0.5191 0.2686 (3)	0.024 (6)
H12	0.6332	0.4506	0.2316	0.051*
C35	1,2110(2)	0.73985 (9)	0.3151 (3)	0.031
Н35Л	1.2110 (2)	0.7508	0.0101 (0)	0.071*
H35A H25B	1.2094	0.7506	0.4025	0.071*
H35D H35C	1.1907	0.7390	0.2478	0.071*
1135C	1.2333 1 1242 (2)	0.7103	0.3013 0.1672 (2)	0.071°
	1.1342 (5)	0.00931 (8)	0.1073 (2)	0.0437 (0)
	1.1337	0.0382	0.1381	0.000*
	1.0944	0.5975	0.0799	0.066*
П/С	1.2269	0.5998	0.2194	0.000
	1.2034 (5)	0.51936 (9)	0.9912 (2)	0.0580 (8)
H2IA	1.2/33	0.5400	1.0327	0.087*
H2IB	1.24//	0.4957	0.9779	0.08/*
H2IC	1.1005	0.3129	1.0483	$0.08/^{*}$
U14	0.3882 (3)	0.43554 (8)	0.2267 (3)	0.0555 (/)
HI4A	0.4229	0.4150	0.2944	0.083*
HI4B	0.38/3	0.4255	0.1456	0.083*
HI4C	0.2940	0.4429	0.2095	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.02209 (8)	0.02094 (8)	0.02489 (8)	0.00118 (5)	0.01282 (6)	0.00266 (5)
P1	0.0233 (2)	0.0191 (2)	0.0242 (2)	0.00116 (17)	0.01238 (19)	0.00274 (18)
P2	0.0196 (2)	0.0189 (2)	0.0222 (2)	0.00115 (17)	0.01191 (18)	0.00183 (17)
O2	0.0480 (10)	0.0589 (11)	0.0329 (8)	0.0042 (8)	0.0229 (8)	-0.0024 (8)
C29	0.0199 (9)	0.0200 (9)	0.0224 (9)	-0.0014 (7)	0.0118 (7)	-0.0016 (7)
C2	0.0266 (10)	0.0256 (9)	0.0213 (9)	0.0021 (8)	0.0111 (8)	0.0004 (7)
C25	0.0188 (9)	0.0212 (9)	0.0323 (10)	-0.0035 (7)	0.0132 (8)	-0.0059 (8)
C1	0.0275 (10)	0.0165 (8)	0.0245 (9)	-0.0008 (7)	0.0138 (8)	0.0010 (7)
C36	0.0220 (9)	0.0174 (8)	0.0257 (9)	0.0015 (7)	0.0127 (7)	0.0003 (7)
C26	0.0240 (9)	0.0279 (10)	0.0244 (9)	-0.0057 (8)	0.0136 (8)	-0.0070(8)
C22	0.0191 (8)	0.0200 (8)	0.0246 (9)	-0.0016 (7)	0.0122 (7)	-0.0004 (7)
C37	0.0200 (9)	0.0309 (10)	0.0266 (9)	0.0010 (8)	0.0122 (8)	0.0008 (8)
C27	0.0208 (9)	0.0252 (9)	0.0217 (9)	-0.0007 (7)	0.0090 (7)	0.0013 (7)
C15	0.0266 (9)	0.0226 (9)	0.0242 (9)	0.0033 (7)	0.0159 (8)	0.0027 (7)
C23	0.0232 (9)	0.0227 (9)	0.0218 (9)	0.0002 (7)	0.0110 (7)	-0.0012 (7)
C3	0.0244 (10)	0.0321 (10)	0.0294 (10)	-0.0012 (8)	0.0135 (8)	-0.0037 (8)
C8	0.0257 (10)	0.0237 (9)	0.0247 (9)	-0.0002 (8)	0.0092 (8)	0.0050 (8)
C24	0.0215 (9)	0.0219 (9)	0.0268 (9)	0.0006 (7)	0.0080 (8)	0.0012 (8)
C40	0.0211 (9)	0.0313 (10)	0.0376 (11)	-0.0043 (8)	0.0146 (8)	-0.0090 (9)
C39	0.0263 (10)	0.0223 (9)	0.0271 (10)	0.0007 (8)	0.0109 (8)	0.0000 (8)
C30	0.0240 (9)	0.0236 (9)	0.0221 (9)	-0.0014 (7)	0.0097 (7)	0.0007 (7)
C34	0.0275 (10)	0.0262 (10)	0.0335 (10)	0.0028 (8)	0.0158 (9)	0.0065 (8)
01	0.0377 (11)	0.115 (2)	0.0844 (16)	-0.0280 (11)	0.0367 (11)	-0.0450 (14)
C38	0.0269 (10)	0.0365 (11)	0.0251 (9)	0.0011 (8)	0.0161 (8)	-0.0007 (8)
C5	0.0337 (11)	0.0295 (10)	0.0233 (9)	0.0013 (8)	0.0129 (8)	0.0045 (8)
C31	0.0196 (9)	0.0351 (11)	0.0270 (10)	-0.0014 (8)	0.0072 (8)	-0.0012 (8)
C4	0.0323 (10)	0.0267 (10)	0.0288 (10)	-0.0008 (8)	0.0181 (9)	-0.0005 (8)
C16	0.0308 (10)	0.0232 (10)	0.0322 (10)	0.0007 (8)	0.0136 (9)	0.0020 (8)
C9	0.0288 (10)	0.0321 (11)	0.0273 (10)	-0.0008(8)	0.0122 (8)	0.0022 (8)
C20	0.0424 (12)	0.0231 (9)	0.0270 (10)	0.0003 (9)	0.0184 (9)	0.0008 (8)
C41	0.0257 (10)	0.0333 (11)	0.0346 (11)	-0.0049 (8)	0.0204 (9)	-0.0093 (9)
N1	0.0489 (14)	0.0755 (16)	0.0647 (15)	0.0005 (12)	0.0433 (13)	-0.0034 (13)
C6	0.0251 (10)	0.0264 (10)	0.0278 (10)	0.0028 (8)	0.0105 (8)	0.0047 (8)
C32	0.0242 (10)	0.0360 (11)	0.0248 (9)	-0.0096 (8)	0.0131 (8)	-0.0076 (8)
C33	0.0334 (11)	0.0292 (10)	0.0325 (10)	-0.0077 (8)	0.0190 (9)	0.0020 (8)
C28	0.0311 (11)	0.0299 (11)	0.0424 (12)	0.0019 (9)	0.0178 (10)	-0.0084 (9)
C19	0.0447 (13)	0.0350 (11)	0.0239 (10)	-0.0020 (10)	0.0137 (9)	-0.0046 (9)
C17	0.0446 (13)	0.0241 (10)	0.0355 (11)	0.0077 (9)	0.0177 (10)	0.0082 (9)
C18	0.0436 (13)	0.0370 (12)	0.0246 (10)	0.0112 (10)	0.0148 (9)	0.0044 (9)
C10	0.0299 (11)	0.0410 (12)	0.0326 (11)	-0.0093 (9)	0.0113 (9)	0.0036 (9)
C13	0.0369 (12)	0.0287 (11)	0.0441 (13)	-0.0004 (9)	0.0191 (10)	-0.0040 (9)
C11	0.0394 (12)	0.0309 (11)	0.0314 (11)	-0.0084 (9)	0.0050 (9)	0.0056 (9)
C42	0.0310 (11)	0.0465 (13)	0.0287 (11)	-0.0027 (10)	0.0113 (9)	-0.0041 (9)
C12	0.0467 (14)	0.0279 (11)	0.0485 (14)	-0.0021 (10)	0.0178 (11)	-0.0062 (10)
C35	0.0282 (12)	0.0679 (17)	0.0473 (14)	-0.0169 (11)	0.0176 (11)	-0.0008 (12)

C7	0.0408 (13)	0.0611 (16)	0.0385 (12)	-0.0009 (12)	0.0261 (11)	0.0052 (11)
C21	0.0705 (19)	0.0537 (16)	0.0314 (13)	0.0160 (14)	0.0069 (13)	0.0056 (12)
C14	0.0536 (16)	0.0370 (13)	0.0582 (16)	-0.0176 (12)	0.0096 (13)	-0.0002 (12)

Geometric parameters (Å, °)

Ag1—O1	2.4125 (19)	C38—H38	0.9500
Ag1—O2	2.4227 (16)	C5—C6	1.384 (3)
Ag1—P1	2.4287 (5)	C5—C4	1.394 (3)
Ag1—P2	2.4570 (5)	С5—Н5	0.9500
P1—C8	1.819 (2)	C31—C32	1.388 (3)
P1—C15	1.8234 (19)	C31—H31	0.9500
P1—C1	1.8282 (19)	C4—C7	1.510 (3)
P2-C29	1.8182 (18)	C16—C17	1.382 (3)
P2—C36	1.8209 (19)	C16—H16	0.9500
P2—C22	1.8269 (19)	C9—C10	1.387 (3)
01—N1	1.249 (3)	С9—Н9	0.9500
O2—N1	1.233 (3)	C20—C19	1.386 (3)
C29—C30	1.389 (3)	C20—H20	0.9500
C29—C34	1.397 (3)	C41—H41	0.9500
С2—С3	1.392 (3)	С6—Н6	0.9500
C2—C1	1.392 (3)	C32—C33	1.392 (3)
С2—Н2	0.9500	C32—C35	1.503 (3)
C25—C26	1.388 (3)	С33—Н33	0.9500
C25—C24	1.394 (3)	C28—H28A	0.9800
C25—C28	1.507 (3)	C28—H28B	0.9800
C1—C6	1.397 (3)	C28—H28C	0.9800
C36—C37	1.392 (3)	C19—C18	1.386 (3)
C36—C41	1.392 (3)	C19—H19	0.9500
C26—C27	1.386 (3)	C17—C18	1.390 (3)
C26—H26	0.9500	C17—H17	0.9500
C22—C23	1.393 (3)	C18—C21	1.510 (3)
C22—C27	1.395 (3)	C10-C11	1.381 (3)
C37—C38	1.387 (3)	C10—H10	0.9500
С37—Н37	0.9500	C13—C12	1.386 (3)
С27—Н27	0.9500	C13—H13	0.9500
C15—C16	1.390 (3)	C11—C12	1.391 (4)
C15—C20	1.394 (3)	C11—C14	1.513 (3)
C23—C24	1.390 (3)	C42—H42A	0.9800
С23—Н23	0.9500	C42—H42B	0.9800
C3—C4	1.385 (3)	C42—H42C	0.9800
С3—Н3	0.9500	C12—H12	0.9500
С8—С9	1.387 (3)	C35—H35A	0.9800
C8—C13	1.394 (3)	C35—H35B	0.9800
C24—H24	0.9500	C35—H35C	0.9800
C40—C41	1.382 (3)	С7—Н7А	0.9800
С40—С39	1.387 (3)	С7—Н7В	0.9800
C40—H40	0.9500	С7—Н7С	0.9800

C39—C38	1.388 (3)	C21—H21A	0.9800
C39—C42	1.506 (3)	C21—H21B	0.9800
C30—C31	1.387 (3)	C21—H21C	0.9800
С30—Н30	0.9500	C14—H14A	0.9800
C34—C33	1.383 (3)	C14—H14B	0.9800
С34—Н34	0.9500	C14—H14C	0.9800
01—N1	1.249 (3)		
O1—Ag1—O2	50.80 (7)	C3—C4—C5	118.19 (18)
O1—Ag1—P1	116.26 (6)	C3—C4—C7	120.69 (19)
O2—Ag1—P1	125.62 (4)	C5—C4—C7	121.11 (19)
O1—Ag1—P2	107.68 (7)	C17—C16—C15	120.6 (2)
O2—Ag1—P2	107.83 (4)	C17—C16—H16	119.7
P1—Ag1—P2	124.597 (16)	C15—C16—H16	119.7
C8—P1—C15	104.32 (9)	C8—C9—C10	120.4 (2)
C8—P1—C1	105.61 (9)	С8—С9—Н9	119.8
C15—P1—C1	103.18 (9)	С10—С9—Н9	119.8
C8—P1—Ag1	113.22 (7)	C19—C20—C15	120.78 (19)
C15—P1—Ag1	119.24 (6)	С19—С20—Н20	119.6
C1—P1—Ag1	110.03 (6)	С15—С20—Н20	119.6
C29—P2—C36	104.60 (8)	C40—C41—C36	120.68 (18)
C29—P2—C22	105.10 (8)	C40—C41—H41	119.7
C36—P2—C22	103.35 (8)	C36—C41—H41	119.7
C29—P2—Ag1	116.47 (6)	O2—N1—O1	113.4 (2)
C36—P2—Ag1	109.17 (6)	C5—C6—C1	120.37 (19)
C22—P2—Ag1	116.74 (6)	С5—С6—Н6	119.8
N1—O2—Ag1	97.86 (14)	С1—С6—Н6	119.8
C30—C29—C34	119.00 (17)	C31—C32—C33	118.79 (18)
C30—C29—P2	118.98 (14)	C31—C32—C35	120.3 (2)
C34—C29—P2	122.00 (14)	C33—C32—C35	120.9 (2)
C3—C2—C1	120.60 (18)	C34—C33—C32	120.79 (19)
С3—С2—Н2	119.7	С34—С33—Н33	119.6
C1—C2—H2	119.7	С32—С33—Н33	119.6
C26—C25—C24	117.94 (17)	C25—C28—H28A	109.5
C26—C25—C28	120.83 (18)	C25—C28—H28B	109.5
C24—C25—C28	121.15 (18)	H28A—C28—H28B	109.5
C2—C1—C6	118.49 (17)	C25—C28—H28C	109.5
C2—C1—P1	123.02 (14)	H28A—C28—H28C	109.5
C6—C1—P1	117.95 (15)	H28B—C28—H28C	109.5
C37—C36—C41	118.24 (17)	C20-C19-C18	121.0 (2)
C37—C36—P2	123.18 (14)	С20—С19—Н19	119.5
C41—C36—P2	118.52 (14)	C18—C19—H19	119.5
C27—C26—C25	121.38 (17)	C16—C17—C18	121.4 (2)
C27—C26—H26	119.3	C16—C17—H17	119.3
C25—C26—H26	119.3	C18—C17—H17	119.3
C23—C22—C27	118.79 (17)	C19—C18—C17	117.9 (2)
C23—C22—P2	123.59 (14)	C19—C18—C21	121.6 (2)
C27—C22—P2	117.61 (14)	C17—C18—C21	120.5 (2)

C38—C37—C36	120.51 (18)	C11—C10—C9	121.4 (2)
С38—С37—Н37	119.7	C11-C10-H10	119.3
С36—С37—Н37	119.7	C9—C10—H10	119.3
C26—C27—C22	120.37 (17)	C12—C13—C8	120.2 (2)
С26—С27—Н27	119.8	C12—C13—H13	119.9
С22—С27—Н27	119.8	C8—C13—H13	119.9
C16—C15—C20	118.18 (18)	C10-C11-C12	117.9 (2)
C16—C15—P1	123.38 (15)	C10-C11-C14	121.1 (2)
C20—C15—P1	118.37 (14)	C12—C11—C14	120.9 (2)
C24—C23—C22	120.16 (17)	C39—C42—H42A	109.5
С24—С23—Н23	119.9	C39—C42—H42B	109.5
С22—С23—Н23	119.9	H42A—C42—H42B	109.5
C4—C3—C2	121.01 (19)	C39—C42—H42C	109.5
С4—С3—Н3	119.5	H42A—C42—H42C	109.5
С2—С3—Н3	119.5	H42B—C42—H42C	109.5
C9—C8—C13	118.70 (19)	C13—C12—C11	121.3 (2)
C9—C8—P1	118.16 (15)	C13—C12—H12	119.4
C13—C8—P1	123.03 (16)	C11—C12—H12	119.4
C23—C24—C25	121.30 (18)	С32—С35—Н35А	109.5
C23—C24—H24	119.4	С32—С35—Н35В	109.5
C25—C24—H24	119.4	H35A—C35—H35B	109.5
C41—C40—C39	121.37 (18)	С32—С35—Н35С	109.5
C41—C40—H40	119.3	H35A—C35—H35C	109.5
C39—C40—H40	119.3	H35B—C35—H35C	109.5
C40—C39—C38	117.86 (18)	С4—С7—Н7А	109.5
C40—C39—C42	120.99 (19)	С4—С7—Н7В	109.5
C38—C39—C42	121.14 (18)	H7A—C7—H7B	109.5
C31—C30—C29	120.40 (18)	С4—С7—Н7С	109.5
С31—С30—Н30	119.8	H7A—C7—H7C	109.5
С29—С30—Н30	119.8	H7B—C7—H7C	109.5
C33—C34—C29	120.26 (19)	C18—C21—H21A	109.5
С33—С34—Н34	119.9	C18—C21—H21B	109.5
С29—С34—Н34	119.9	H21A—C21—H21B	109.5
N1—O1—Ag1	97.87 (15)	C18—C21—H21C	109.5
C37—C38—C39	121.31 (18)	H21A—C21—H21C	109.5
С37—С38—Н38	119.3	H21B—C21—H21C	109.5
С39—С38—Н38	119.3	C11—C14—H14A	109.5
C6—C5—C4	121.28 (18)	C11—C14—H14B	109.5
С6—С5—Н5	119.4	H14A—C14—H14B	109.5
С4—С5—Н5	119.4	C11—C14—H14C	109.5
C30—C31—C32	120.75 (19)	H14A—C14—H14C	109.5
С30—С31—Н31	119.6	H14B—C14—H14C	109.5
C32—C31—H31	119.6		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C28—H28 B ····O2 ⁱ	0.98	2.34	3.292 (3)	165

				data reports
C42—H42 <i>B</i> …N1 ⁱⁱ	0.98	2.52	3.491 (4)	170
Symmetry codes: (i) $x-1/2, -y+3/2, z-1/2;$	(ii) $x, y, z-1$.			