

ISSN 2414-3146

Received 13 December 2022 Accepted 7 January 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: silver(I) fluoride; silver fluorides; crystal structure; single-crystal X-ray diffraction.

CCDC reference: 2235315

Structural data: full structural data are available from iucrdata.iucr.org

Crystal structure reinvestigation of silver(I) fluoride, AgF

Matic Lozinšek,^{a,b}* Matic Belak Vivod^{a,b} and Mirela Dragomir^{a,b}

^a Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and ^bJožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia. *Correspondence e-mail: matic.lozinsek@ijs.si

A crystal structure reinvestigation of AgF based on a low-temperature highresolution single-crystal X-ray diffraction data is reported. Silver(I) fluoride crystallizes in the rock salt structure type $(Fm\overline{3}m)$ with a unit-cell parameter of 4.92171 (14) Å at 100 K, resulting in an Ag-F bond length of 2.46085 (7) Å.

Structure description

Crystal structure data of the following binary silver fluorides can be retrieved from the Inorganic Crystal Structure Database (ICSD; Bergerhoff *et al.*, 1983; Zagorac *et al.*, 2019): Ag₂F, AgF, AgF₂, AgF₃, Ag₂F₅, and Ag₃F₈ (Table 1).

The crystal structure of silver subfluoride, Ag₂F, was elucidated from powder and single-crystal X-ray diffraction data (Ott & Seyfarth, 1928; Terrey & Diamond, 1928; Argay & Náray-Szabó, 1966) as well as studied by powder neutron diffraction measurements from room temperature to 20 K (Williams, 1989). Silver(I) fluoride, AgF, has been investigated at ambient conditions only by powder X-ray diffraction (Ott, 1926; Bottger, & Geddes, 1972). The high-pressure structural behavior of AgF was thoroughly studied by powder X-ray diffraction (Halleck et al., 1972; Jamieson et al., 1975), powder neutron diffraction experiments to 6.5 GPa (Hull & Berastegui, 1998), and by synchrotron powder X-ray diffraction measurements up to 39 GPa (Grzelak et al., 2017a). Silver(II) fluoride, AgF₂, was studied by powder X-ray diffraction (Ruff & Giese, 1934; Charpin et al., 1966; Baturina et al., 1967; Kiselev et al., 1988) and its crystal structure determined from single-crystal X-ray diffraction data (Jesih et al., 1990), as well as by powder neutron diffraction (Charpin et al., 1970; Fischer et al., 1971). Moreover, the highpressure structural behavior of AgF₂ was explored employing synchrotron X-ray diffraction (Grzelak et al., 2017a,b). The crystal structure of silver(III) fluoride, AgF₃, was refined from powder neutron diffraction data and synchrotron powder X-ray diffraction data was also measured (Žemva et al., 1991). A mixed-valence silver(II,III) fluoride

Table 1

Crystal structure data of binary silver fluorides reported in the ICSD database (only one entry for each crystalline phase is given).

Compound	Space group	Unit-cell parameters	Method, conditions	Reference
Ag ₂ F	$P\overline{3}m1$	a = 2.99877(5) Å, $c = 5.6950(2)$ Å	PND, 300 K	Williams (1989)
AgF	$Fm\overline{3}m$	a = 4.92 Å	PXRD	Ott (1926)
AgF_2	$P2_1/n$	$a = 3.34$ Å, $b = 4.57$ Å, $c = 4.65$ Å, $\beta = 84.5^{\circ}$	PXRD, 123 K / 195 K	Baturina et al. (1967)
AgF_2	Pbca	a = 5.568 (1) Å, $b = 5.831$ (1) Å, $c = 5.101$ (1) Å	SCXRD	Jesih et al. (1990)
AgF_2	Pbcn	a = 5.476 (10) Å, $b = 8.331$ (15) Å, $c = 5.787$ (7) Å	Synchrotron PXRD, 14.8 GPa	Grzelak et al. (2017b)
AgF_2	$Pca2_1$	a = 5.475 (7) Å, $b = 4.704$ (6) Å, $c = 5.564$ (6) Å	Synchrotron PXRD, 10 GPa	Grzelak et al. (2017a)
AgF ₃	P6122	a = 5.0782 (2) Å, $c = 15.4523$ (8) Å	PND	Žemva et al. (1991)
Ag_2F_5	$P\overline{1}$	a = 4.999 (2) Å, $b = 11.087$ (5) Å, $c = 7.357$ (3) Å, $\alpha = 90.05$ (3)°, $\beta = 106.54$ (4)°, $\gamma = 90.18$ (4)°	SCXRD	Fischer & Müller (2002)
Ag_3F_8	$P2_{1}/n$	a = 5.04664 (8) Å, $b = 11.0542$ (2) Å, $c = 5.44914$ (9) Å, $\beta = 97.170$ (2)°	Synchrotron PXRD, 299 K	Graudejus et al. (2000)

PND = powder neutron diffraction; PXRD = powder X-ray diffraction; SCXRD = single-crystal X-ray diffraction.

 Ag_2F_5 , or $Ag^{II}F[Ag^{III}F_4]$, was structurally characterized by single-crystal X-ray diffraction (Fischer & Müller, 2002), whereas the crystal structure of Ag_3F_8 , or $Ag^{II}[Ag^{III}F_4]_2$, was determined by synchrotron powder X-ray diffraction (Graudejus *et al.*, 2000). Two recent reports explored the pressure–composition phase diagram of binary silver fluorides by theoretical methods (Kurzydłowski *et al.*, 2021; Rybin *et al.*, 2022).

Herein, a low-temperature high-resolution (0.54 Å) singlecrystal X-ray diffraction measurement of AgF (rock salt structure type, $Fm\overline{3}m$) is reported (Fig. 1). The unit-cell parameter (Table 2) is in good agreement with the previously reported room-temperature value of 4.936 (1) Å (Bottger & Geddes, 1972). The Ag-F bond length determined from the current low-temperature data is 2.46085 (7) Å.

Synthesis and crystallization

Agglomerated single-crystals with typical dimensions of \sim 50 μ m were recovered from a solid-state reaction

Figure 1

The rock salt-type structure of AgF. Displacement ellipsoids are drawn at the 50% probability level.

(T = 310 °C) where AgF (Thermo Scientific, 99+%) was used as a starting material. A small amount of sample was placed onto a watch glass and covered with a protective layer of perfluorodecalin (Fluorochem, 96.0%, *cis* and *trans*) inside a nitrogen-filled glovebox (Vigor, H₂O < 0.1 ppm). The sample was examined under a polarizing microscope outside the glovebox, and selected crystals were mounted on a MiTeGen Dual Thickness MicroLoops with the aid of Baysilone-Paste (Bayer-Silicone, mittelviskos).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

 Table 2

 Experimental details

Enperimental actails	
Crystal data	
Chemical formula	AgF
M _r	126.87
Crystal system, space group	Cubic, $Fm\overline{3}m$
Temperature (K)	100
a (Å)	4.92171 (14)
$V(Å^3)$	119.22 (1)
Z	4
Radiation type	Ag $K\alpha$, $\lambda = 0.56087$ Å
$\mu (\text{mm}^{-1})$	8.51
Crystal size (mm)	$0.06 \times 0.05 \times 0.05$
Data collection	
Diffractometer	XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.724, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	730, 37, 37
R _{int}	0.050
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.926
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.011, 0.020, 1.28
No. of reflections	37
No. of parameters	3
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.59, -0.55

Computer programs: CrysAlis PRO (Rigaku OD, 2022), OLEX2.solve and OLEX2 (Dolomanov et al., 2009), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

Funding information

Funding for this research was provided by: Slovenian Research Agency (grant Nos. J2-2496 and P2-0105); European Research Council (ERC) and Marie Skłodowska-Curie Individual Fellowship (MSCA-IF) under the European Union's Horizon 2020 research and innovation programme (grant Nos. 950625 and 101031415); Jožef Stefan Institute Director's Fund.

References

- Argay, G. & Náray-Szabó, I. (1966). Acta Chim. Acad. Sci. Hung. 49, 329–337.
- Baturina, É. A., Luk'yanychev, Y. A. & Rastorguev, L. N. (1967). J. Struct. Chem. 7, 591–592.
- Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66–69.
- Bottger, G. L. & Geddes, A. L. (1972). J. Chem. Phys. 56, 3735– 3739.
- Brandenburg, K. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Charpin, P., Dianoux, A.-J., Marquet-Ellis, H. & Nguyen-Nghi (1966). C. R. Seances Acad. Sci., Ser. C, **263**, 1359–1361.
- Charpin, P., Plurien, P. & Mériel, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 7-13.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Fischer, P., Schwarzenbach, D. & Rietveld, H. M. (1971). J. Phys. Chem. Solids, **32**, 543–550.
- Fischer, R. & Müller, B. G. (2002). Z. Anorg. Allg. Chem. 628, 2592–2596.
- Graudejus, O., Wilkinson, A. P. & Bartlett, N. (2000). *Inorg. Chem.* **39**, 1545–1548.
- Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Budzianowski, A., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi,

M., Struzhkin, V. V. & Grochala, W. (2017a). Inorg. Chem. 56, 14651–14661.

- Grzelak, A., Gawraczyński, J., Jaroń, T., Kurzydłowski, D., Mazej, Z., Leszczyński, P. J., Prakapenka, V. B., Derzsi, M., Struzhkin, V. V. & Grochala, W. (2017b). *Dalton Trans.* **46**, 14742–14745.
- Halleck, P. M., Jamieson, J. C. & Pistorius, C. W. F. T. (1972). J. Phys. Chem. Solids, 33, 769–773.
- Hull, S. & Berastegui, P. (1998). J. Phys.: Condens. Matter, 10, 7945–7955.
- Jamieson, J. C., Halleck, P. M., Roof, R. B. & Pistorius, C. W. F. T. (1975). J. Phys. Chem. Solids, 36, 939–944.
- Jesih, A., Lutar, K., Žemva, B., Bachmann, B., Becker, S., Müller, B. G. & Hoppe, R. (1990). Z. Anorg. Allg. Chem. 588, 77–83.
- Kiselev, Yu. M., Popov, A. I., Timakov, A. A., Bukharin, K. V. & Sukhoverkhov, V. F. (1988). *Russ. J. Inorg. Chem* 33, 708–710.
- Kurzydłowski, D., Derzsi, M., Zurek, E. & Grochala, W. (2021). Chem. Eur. J. 27, 5536–5545.
- Ott, H. (1926). Z. Kristallogr. 63, 222-230.
- Ott, H. & Seyfarth, H. (1928). Z. Kristallogr. 67, 430-433.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.
- Ruff, O. & Giese, M. (1934). Z. Anorg. Allg. Chem. 219, 143-148.
- Rybin, N., Chepkasov, I., Novoselov, D. Y., Anisimov, V. I. & Oganov, A. R. (2022). J. Phys. Chem. C, **126**, 15057–15063.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Terrey, H. & Diamond, H. (1928). J. Chem. Soc. pp. 2820-2824.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Williams, A. (1989). J. Phys. Condens. Matter, 1, 2569-2574.
- Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.
- Žemva, B., Lutar, K., Jesih, A., Casteel, W. J. Jr, Wilkinson, A. P., Cox, D. E., Von Dreele, R. B., Borrmann, H. & Bartlett, N. (1991). J. Am. Chem. Soc. 113, 4192–4198.

full crystallographic data

IUCrData (2023). 8, x230018 [https://doi.org/10.1107/S2414314623000184]

Crystal structure reinvestigation of silver(I) fluoride, AgF

Matic Lozinšek, Matic Belak Vivod and Mirela Dragomir

Silver(I) fluoride

Ag $K\alpha$ radiation, $\lambda = 0.56087$ Å Cell parameters from 689 reflections $\theta = 5.7-31.2^{\circ}$ $\mu = 8.51 \text{ mm}^{-1}$ T = 100 K Irregular, colourless $0.06 \times 0.05 \times 0.05 \text{ mm}$
$T_{\min} = 0.724, T_{\max} = 1.000$ 730 measured reflections 37 independent reflections 37 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.050$ $\theta_{\max} = 31.3^{\circ}, \theta_{\min} = 5.7^{\circ}$ $h = -9 \rightarrow 8$ $k = -9 \rightarrow 8$ $l = -8 \rightarrow 8$
0 restraints Primary atom site location: iterative $w = 1/[\sigma^2(F_o^2) + 0.2914P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.55 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Agl	0.000000	0.000000	0.000000	0.01650 (12)

data reports

F1	0.500000	0.000000	0.000000	0.01	99 (8)	
Atomic a	lisplacement paramete	ers ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Agl	0.01650 (12)	0.01650 (12)	0.01650 (12)	0.000	0.000	0.000
F1	0.0199 (8)	0.0199 (8)	0.0199 (8)	0.000	0.000	0.000
Geometr	ric parameters (Å, °)					
Ag1—F	1 ⁱ	2.4609 (1)	Ag1—F1 ⁱⁱⁱ		2.4609 (1)	
Ag1—F	1 ⁱⁱ	2.4609(1)	Ag1—F1 ^{iv}		2.4609 (1)	
Ag1—F	1	2.4609 (1)	$Ag1$ — $F1^{v}$		2.4609 (1)	
F1 ⁱ —Ag1—F1		90.0	Ag1 ^{vi} —F1—Ag1		90.0	
F1 ^v —Ag1—F1 ⁱⁱⁱ		180.0	Ag1 ^{vii} —F1—Ag1 ^{viii}		180.0	
F1 ^v —Ag	g1—F1 ⁱⁱ	90.0	Ag1 ^{vii} —F1—	-Ag1 ^{ix}	90.0	
F1 ^{iv} —Ag	g1—F1 ⁱⁱⁱ	90.0	Ag1 ^x —F1—	Ag1 ^{viii}	90.0	
F1—Ag	1—F1 ⁱⁱ	90.0	Ag1—F1—A	Ag1 ^{ix}	90.0	
F1 ^{iv} —Ag1—F1 ⁱⁱ		90.0	Ag1 ^x —F1—Ag1 ^{ix}		90.0	
F1 ⁱ —Ag	;1—F1 ^v	90.0	Ag1—F1—A	Ag1 ^{viii}	90.0	
F1 ⁱ —Ag	;1—F1 ^{iv}	90.0	Ag1 ^{vi} —F1—	-Ag1 ^x	90.0	
F1—Ag1—F1 ^v		90.0	Ag1—F1—Ag1 ^{vii}		90.0	
F1 ⁱ —Ag	,1—F1 ⁱⁱ	180.0	Ag1 ^{vi} —F1—	-Ag1 ^{ix}	180.0)
F1 ^{iv} —Ag	g1—F1 ^v	90.0	Ag1 ^x —F1—	Ag1 ^{vii}	90.0	
F1—Ag	$1 - F1^{iv}$	180.0	Ag1—F1—A	Ag1 ^x	180.0)
F1 ⁱ —Ag	g1—F1 ⁱⁱⁱ	90.0	Ag1 ^{vi} —F1—	-Ag1 ^{viii}	90.0	
F1—Ag	1—F1 ⁱⁱⁱ	90.0	Ag1 ^{viii} —F1—Ag1 ^{ix}		90.0	
F1 ⁱⁱⁱ —A	g1—F1 ⁱⁱ	90.0	Ag1 ^{vi} —F1—	-Ag1 ^{vii}	90.0	

Symmetry codes: (i) *x*-1/2, *y*+1/2, *z*; (ii) *x*-1/2, *y*-1/2, *z*; (iii) *x*-1/2, *y*, *z*+1/2; (iv) *x*-1, *y*, *z*; (v) *x*-1/2, *y*, *z*-1/2; (vi) *x*+1/2, *y*+1/2, *z*; (vii) *x*+1/2, *y*, *z*-1/2; (viii) *x*+1/2, *y*, *z*+1/2; (ix) *x*+1/2, *y*+1/2; (ix) *x*+1/2; (