



ISSN 2414-3146

Received 28 June 2023 Accepted 5 July 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; oxidodisilicate; rare-earth metal; cerium; isotypism.

CCDC reference: 2222660

Structural data: full structural data are available from iucrdata.iucr.org



# H-type Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]

Ralf Jules Christian Locke, Maria Weis and Thomas Schleid\*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany. \*Correspondence e-mail: schleid@iac.uni-stuttgart.de

The title compound, dicerium(III) oxidodisilicate,  $Ce_2[Si_2O_7]$ , was obtained as a by-product in its *H*-type structure after attempts to synthesize  $CeSb_2O_4Cl$  from fused silica ampoules. It crystallizes isotypically with *H*-La<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]. The four crystallographically distinct  $Ce^{III}$  cations form distorted square antiprisms, capped square antiprisms, and bicapped square antiprisms as coordination polyhedra consisting of oxygen atoms. Four crystallographically different silicon atoms recruit the centers of two different isolated  $[Si_2O_7]^{6-}$  units.



#### Structure description

H-type Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>], like H-La<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>] (Müller-Bunz & Schleid, 2000), crystallizes isotypically with the triclinic form of potassium dichromate [K<sub>2</sub>[Cr<sub>2</sub>O<sub>7</sub>]; Brandon & Brown, 1968] in the space group  $P\overline{1}$ . According to the single-crystal X-ray structure analysis, four crystallographically distinct Ce<sup>III</sup> cations with coordination numbers ranging from eight to ten are present (Fig. 1), with oxygen atoms forming distorted square antiprisms (Ce2), capped square antiprisms (Ce4), and bicapped square antiprisms (Ce1 and Ce3) as coordination polyhedra. The cerium-oxygen distances d(Ce-O) cover an interval from 2.366 (4) to 2.817 (4) Å (Table 1) plus 3.11 (4)-3.34 (4) Å to most caps. All oxygen atoms belong to pyroanionic oxidodisilicate anions [Si<sub>2</sub>O<sub>7</sub>]<sup>6-</sup> (Fig. 2), each consisting of two vertex-connected [SiO<sub>4</sub>]<sup>4-</sup> tetrahedra. Here, four crystallographically different silicon atoms recruit the centers of these two isolated  $[Si_2O_7]^{6-}$  units [d(Si-O) = 1.588 (4)-1.676 (4) Å (Table 1);  $\angle$  (O-Si-O) = 100.67 (19)-117.4 (2)°]. Both exhibit an ecliptical conformation with Si-O-Si angles of 129.2 (2) and 128.8 (2)°, leading to a backboneto-backbone alignment of the Si-O-Si bridges. The silicon-oxygen distances are in the usual range for this element combination, with slightly longer contacts to the bridging oxygen atoms (Table 1). The shortest, of course non-bonding, cerium-silicon distances of 3.2118 (14)–3.3391 (14) Å reflect the close proximity of Ce<sup>III</sup> to the discrete  $[Si_2O_7]^{6-1}$ anions. Figure 3 shows the content of an extended unit-cell with highlighted [Si<sub>2</sub>O<sub>7</sub>]<sup>6-</sup>



| Table 1  |        |         |      |
|----------|--------|---------|------|
| Selected | l bond | lengths | (Å). |

| Ce1-O6                 | 2.386 (4)   | Ce3-O1 <sup>vii</sup>  | 2.396 (4)   |
|------------------------|-------------|------------------------|-------------|
| Ce1-O13                | 2.439 (4)   | Ce3–O7                 | 2.457 (4)   |
| Ce1-O12                | 2.445 (4)   | Ce3–O2 <sup>iii</sup>  | 2.490 (4)   |
| Ce1-O10                | 2.480 (4)   | Ce3–O3 <sup>iv</sup>   | 2.534 (4)   |
| Ce1-O14 <sup>i</sup>   | 2.486 (4)   | Ce3-O6                 | 2.555 (4)   |
| Ce1-O9 <sup>ii</sup>   | 2.516 (4)   | Ce3-O13                | 2.632 (4)   |
| Ce1-O11 <sup>i</sup>   | 2.663 (4)   | Ce3-O14                | 2.687 (4)   |
| Ce1-Si4 <sup>i</sup>   | 3.2597 (15) | Ce3–O4 <sup>iii</sup>  | 2.705 (4)   |
| Ce1-Si2                | 3.3340 (15) | Ce3-Si4                | 3.2767 (15) |
| Ce1-Si3                | 3.4775 (14) | Ce3-Si1 <sup>iii</sup> | 3.3138 (14) |
| Ce1-Ce3                | 3.9086 (4)  | Ce3-Si2 <sup>ix</sup>  | 3.3545 (14) |
| Ce1-Ce4 <sup>ii</sup>  | 3.9449 (4)  | Ce3-Si1 <sup>x</sup>   | 3.4591 (15) |
| Ce2-O8                 | 2.366 (4)   | Si1-O1 <sup>iii</sup>  | 1.592 (4)   |
| Ce2-O2                 | 2.370 (4)   | Si1-O2                 | 1.624 (4)   |
| Ce2-O12                | 2.376 (4)   | Si1-O3                 | 1.632 (4)   |
| Ce2-O10                | 2.494 (4)   | Si1-O4                 | 1.664 (4)   |
| Ce2-O10 <sup>iii</sup> | 2.526 (4)   | Si1-Ce3 <sup>iii</sup> | 3.3138 (14) |
| Ce2-O13 <sup>iii</sup> | 2.643 (4)   | Si1-Ce4 <sup>iii</sup> | 3.4549 (14) |
| Ce2-O9 <sup>iii</sup>  | 2.675 (4)   | Si1-Ce3xi              | 3.4591 (15) |
| Ce2-O3                 | 2.817 (4)   | Si2-O5                 | 1.589 (4)   |
| Ce2-Si1                | 3.2118 (14) | Si2-O7 <sup>i</sup>    | 1.636 (4)   |
| Ce2-Si3 <sup>iii</sup> | 3.2386 (15) | Si2-O6                 | 1.642 (4)   |
| Ce2-Si4 <sup>iv</sup>  | 3.4514 (15) | Si2-O4 <sup>x</sup>    | 1.660 (4)   |
| Ce2-Ce1 <sup>iii</sup> | 3.9450 (4)  | Si2-Ce4 <sup>ii</sup>  | 3.3391 (14) |
| Ce4-O5                 | 2.415 (4)   | Si2-Ce3 <sup>i</sup>   | 3.3544 (14) |
| Ce4-O1                 | 2.420 (4)   | Si3-O8 <sup>v</sup>    | 1.595 (4)   |
| Ce4-O3 <sup>v</sup>    | 2.517 (4)   | Si3-O9                 | 1.632 (4)   |
| Ce4-O7 <sup>vi</sup>   | 2.576 (4)   | Si3-O10                | 1.641 (4)   |
| Ce4-O7 <sup>vii</sup>  | 2.603 (4)   | Si3-O11 <sup>iii</sup> | 1.648 (4)   |
| Ce4-O8 <sup>v</sup>    | 2.655 (4)   | Si3-Ce2 <sup>iii</sup> | 3.2386 (15) |
| Ce4-O14vi              | 2.681 (4)   | Si4-O12 <sup>iv</sup>  | 1.588 (4)   |
| Ce4-O9                 | 2.749 (4)   | Si4-O13                | 1.620 (4)   |
| Ce4-O6 <sup>viii</sup> | 2.812 (4)   | Si4-O14                | 1.631 (4)   |
| Ce4-Si3                | 3.2807 (14) | Si4-O11                | 1.676 (4)   |
| Ce4-Si2viii            | 3.3391 (14) | Si4-Ce1 <sup>ix</sup>  | 3.2597 (15) |
| Ce4-Si1 <sup>iii</sup> | 3.4549 (14) | Si4-Ce2 <sup>iv</sup>  | 3.4514 (15) |



Figure 1

Oxygen environment of the four crystallographically different  $Ce^{III}$  cations in *H*-type  $Ce_2[Si_2O_7]$ . The yellow dotted bonds reflect cerium-oxygen distances longer than 3.0 Å. Displacement ellipsoids are drawn at the 95% probability level. Symmetry codes refer to Table 1.



Figure 2

The two distinct oxidodisilicate anions  $[Si_2O_7]^{6-}$  made of two vertexconnected  $[SiO_4]^{4-}$  tetrahedra in *H*-type Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>], where the position of the oxygen atoms define a backbone arrangement (*left*), and their *Newman* projection (*right*). Displacement ellipsoids are drawn at the 95% probability level. Symmetry codes refer to Table 1.

bitetrahedra. The similarity to the other so-far known polymorphs of Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>] [*A*- (Kępiński *et al.*, 2002; Deng & Ibers, 2005) and *G*-type (Tas & Akinc, 1994; Christensen, 1994; Christensen & Hazell, 1994) and even *I*-type Ce<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> ( $\equiv$  Ce<sub>6</sub>[Si<sub>4</sub>O<sub>13</sub>][SiO<sub>4</sub>]<sub>2</sub>) (Kępiński *et al.*, 2002)] is striking and will be discussed in an upcoming review article (Hartenbach *et al.*, 2023) as a follow up of the pioneering one by Felsche (1970).

#### Synthesis and crystallization

Single crystals of H-Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>] were obtained as a by-product during the synthesis of CeSb<sub>2</sub>O<sub>4</sub>Cl (Locke, 2023; Weis, 2023) by reacting Ce<sub>2</sub>O<sub>3</sub> with fused silica (SiO<sub>2</sub>) as reaction vessel at



#### Figure 3

View of the triclinic crystal structure of *H*-type  $Ce_2[Si_2O_7]$  along [100] emphasizing the discrete  $[Si_2O_7]^{6-}$  anions. Displacement ellipsoids are drawn at the 95% probability level.

Table 2Experimental details.

| Crystal data                                                                |                                               |
|-----------------------------------------------------------------------------|-----------------------------------------------|
| Chemical formula                                                            | $Ce_2[Si_2O_7]$                               |
| M <sub>r</sub>                                                              | 448.42                                        |
| Crystal system, space group                                                 | Triclinic, P1                                 |
| Temperature (K)                                                             | 293                                           |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                          | 6.7671 (4), 6.8228 (4), 12.4237 (8)           |
| $\alpha, \beta, \gamma$ (°)                                                 | 83.116 (2), 87.975 (2), 88.854 (2)            |
| $V(Å^3)$                                                                    | 569.05 (6)                                    |
| Ζ                                                                           | 4                                             |
| Radiation type                                                              | Μο Κα                                         |
| $\mu (\text{mm}^{-1})$                                                      | 16.20                                         |
| Crystal size (mm)                                                           | $0.05 \times 0.03 \times 0.01$                |
| Data collection                                                             |                                               |
| Diffractometer                                                              | Stadi-Vari                                    |
| Absorption correction                                                       | Numerical ( <i>LANA</i> ; Koziskova <i>et</i> |
| ТТ                                                                          | 0.414, 0.808                                  |
| <sup>1</sup> min, <sup>1</sup> max<br>No of measured independent and        | 23701 4046 3376                               |
| observed $[I > 2\sigma(I)]$ reflections                                     | 23771, 4040, 3370                             |
| R <sub>int</sub>                                                            | 0.035                                         |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$                          | 0.767                                         |
| Refinement                                                                  |                                               |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                         | 0.030, 0.075, 1.00                            |
| No. of reflections                                                          | 4046                                          |
| No. of parameters                                                           | 199                                           |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e} \ {\rm \AA}^{-3})$ | 2.54, -2.81                                   |

Computer programs: X-AREA (Stoe, 2020), SHELXS97 and SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005).

a temperature of 1023 K, taking advantage of the presumed mineralizers  $Sb_2O_3$  and  $CeCl_3$ . The transparent, colorless crystals exhibit a platelet-like habit.

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### **Acknowledgements**

We thank Dr Falk Lissner for the single-crystal X-ray diffraction measurements.

#### References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933-941.
- Christensen, A. N. (1994). Z. Kristallogr. 209, 7-13.
- Christensen, A. N. & Hazell, R. G. (1994). Acta Chem. Scand. 48, 1012–1014.
- Deng, B. & Ibers, J. A. (2005). Acta Cryst. E61, i76-i78.
- Felsche, J. (1970). J. Less-Common Met. 21, 1-14.
- Hartenbach, I., Locke, R. J. C. & Schleid, Th. (2023). Z. Anorg. Allg. Chem. In preparation.
- Kępiński, L., Wołcyrz, M. & Marchewka, M. (2002). J. Solid State Chem. 168, 110–118.
- Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.
- Locke, R. J. C. (2023). Planned doctoral thesis, University of Stuttgart, Germany.
- Müller-Bunz, H. & Schleid, Th. (2000). Z. Anorg. Allg. Chem. 626, 2549–2556.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Tas, A. C. & Akinc, M. (1994). J. Am. Ceram. Soc. 77, 2968-2970.
- Weis, M. (2023). Bachelor Thesis, University of Stuttgart, Germany.

# full crystallographic data

IUCrData (2023). 8, x230591 [https://doi.org/10.1107/S2414314623005916]

## H-type Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]

Ralf Jules Christian Locke, Maria Weis and Thomas Schleid

Dicerium(III) oxidodisilicate

Crystal data

Ce<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]  $M_r = 448.42$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.7671 (4) Å b = 6.8228 (4) Å c = 12.4237 (8) Å a = 83.116 (2)°  $\beta = 87.975$  (2)°  $\gamma = 88.854$  (2)° V = 569.05 (6) Å<sup>3</sup>

Data collection

Stadi-Vari diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 5.81 pixels mm<sup>-1</sup> DECTRIS PILATUS 200K scans Absorption correction: numerical (*LANA*; Koziskova *et al.*, 2016)  $T_{\min} = 0.414, T_{\max} = 0.808$ 

Refinement

Refinement on  $F^2$ Primary atom site lo<br/>direct methodsLeast-squares matrix: fulldirect methods $R[F^2 > 2\sigma(F^2)] = 0.030$ Secondary atom site<br/>map $wR(F^2) = 0.075$ mapS = 1.00 $w = 1/[\sigma^2(F_o^2) + (0.0$ <br/>where  $P = (F_o^2 + 2)$ 4046 reflectionswhere  $P = (F_o^2 + 2)$ 199 parameters $(\Delta/\sigma)_{max} < 0.001$ <br/>0 restraints $\Delta\rho_{max} = 2.54$  e Å<sup>-3</sup><br/> $\Delta\rho_{min} = -2$  81 e Å<sup>-3</sup>

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 4 F(000) = 800  $D_x = 5.234 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 23784 reflections  $\theta = 1.7-33.1^{\circ}$   $\mu = 16.20 \text{ mm}^{-1}$ T = 293 K Platelet, colourless  $0.05 \times 0.03 \times 0.01 \text{ mm}$ 

23791 measured reflections 4046 independent reflections 3376 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.035$  $\theta_{max} = 33.0^\circ, \ \theta_{min} = 1.7^\circ$  $h = -10 \rightarrow 10$  $k = -10 \rightarrow 10$  $l = -19 \rightarrow 19$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map  $w = 1/[\sigma^2(F_o^2) + (0.0498P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 2.54 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -2.81 \text{ e } \text{Å}^{-3}$  **Refinement**. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of F<sup>2</sup> > 2sigma(F<sup>2</sup>) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x           | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|--------------|---------------------------|
| Cel | 0.23961 (4) | 0.21088 (4) | 0.35322 (2)  | 0.01505 (7)               |
| Ce2 | 0.37019 (4) | 0.36951 (4) | 0.63911 (2)  | 0.01288 (7)               |
| Ce4 | 0.07768 (4) | 0.83629 (4) | 0.15567 (2)  | 0.01239 (7)               |
| Ce3 | 0.67603 (4) | 0.23866 (4) | 0.13758 (2)  | 0.01296 (7)               |
| Si1 | 0.4321 (2)  | 0.2825 (2)  | 0.89563 (11) | 0.0115 (2)                |
| Si2 | 0.1605 (2)  | 0.3171 (2)  | 0.08912 (11) | 0.0120 (2)                |
| Si3 | 0.1616 (2)  | 0.6927 (2)  | 0.41176 (11) | 0.0116 (2)                |
| Si4 | 0.7737 (2)  | 0.1022 (2)  | 0.39232 (11) | 0.0122 (2)                |
| 01  | 0.3784 (6)  | 0.8159 (5)  | 0.0460 (3)   | 0.0138 (7)                |
| O2  | 0.4898 (6)  | 0.4620 (5)  | 0.8025 (3)   | 0.0142 (7)                |
| O3  | 0.2938 (6)  | 0.1348 (5)  | 0.8380 (3)   | 0.0152 (7)                |
| O4  | 0.3020 (6)  | 0.4046 (5)  | 0.9831 (3)   | 0.0144 (7)                |
| 05  | 0.0549 (6)  | 0.4850 (6)  | 0.1496 (3)   | 0.0204 (8)                |
| O6  | 0.3068 (6)  | 0.1720 (5)  | 0.1671 (3)   | 0.0135 (7)                |
| 07  | 0.9958 (6)  | 0.1729 (6)  | 0.0479 (3)   | 0.0151 (7)                |
| 08  | 0.0207 (6)  | 0.3667 (6)  | 0.6549 (3)   | 0.0157 (7)                |
| O9  | 0.2996 (6)  | 0.8508 (5)  | 0.3356 (3)   | 0.0161 (7)                |
| O10 | 0.3069 (6)  | 0.5021 (5)  | 0.4473 (3)   | 0.0144 (7)                |
| O11 | 0.9092 (6)  | 0.2162 (5)  | 0.4758 (3)   | 0.0140 (7)                |
| O12 | 0.3041 (6)  | 0.0981 (6)  | 0.5432 (3)   | 0.0163 (7)                |
| O13 | 0.5976 (6)  | 0.2494 (6)  | 0.3458 (3)   | 0.0156 (7)                |
| 014 | 0.9272 (6)  | 0.0858 (5)  | 0.2895 (3)   | 0.0152 (7)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| monuc displacement parameters (11) | Atomic | displ | lacement | parameters | $(Å^2)$ |
|------------------------------------|--------|-------|----------|------------|---------|
|------------------------------------|--------|-------|----------|------------|---------|

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| Cel | 0.01240 (13) | 0.01724 (13) | 0.01669 (14) | -0.00301 (10) | 0.00049 (10)  | -0.00672 (10) |
| Ce2 | 0.01202 (13) | 0.01287 (12) | 0.01415 (13) | -0.00143 (9)  | -0.00067 (10) | -0.00300 (9)  |
| Ce4 | 0.01122 (13) | 0.01164 (12) | 0.01448 (13) | 0.00012 (9)   | 0.00034 (9)   | -0.00260 (9)  |
| Ce3 | 0.01290 (13) | 0.01218 (12) | 0.01400 (13) | 0.00150 (9)   | 0.00060 (10)  | -0.00289 (9)  |
| Si1 | 0.0113 (6)   | 0.0107 (6)   | 0.0129 (6)   | -0.0003 (5)   | -0.0001 (5)   | -0.0034 (4)   |
| Si2 | 0.0102 (6)   | 0.0121 (6)   | 0.0135 (6)   | -0.0006 (5)   | 0.0002 (5)    | -0.0015 (5)   |
| Si3 | 0.0121 (6)   | 0.0099 (6)   | 0.0128 (6)   | 0.0008 (5)    | -0.0011 (5)   | -0.0018 (5)   |
| Si4 | 0.0092 (6)   | 0.0148 (6)   | 0.0131 (6)   | 0.0026 (5)    | -0.0011 (5)   | -0.0041 (5)   |
| 01  | 0.0108 (16)  | 0.0161 (16)  | 0.0153 (17)  | -0.0003 (13)  | -0.0006 (13)  | -0.0048 (13)  |
| 02  | 0.0168 (18)  | 0.0111 (15)  | 0.0150 (16)  | -0.0021 (13)  | -0.0014 (13)  | -0.0019 (12)  |
| O3  | 0.0141 (17)  | 0.0124 (16)  | 0.0202 (18)  | -0.0004 (13)  | -0.0037 (14)  | -0.0058 (13)  |
| O4  | 0.0132 (17)  | 0.0150 (16)  | 0.0147 (17)  | -0.0007 (13)  | 0.0043 (13)   | -0.0025 (13)  |
| O5  | 0.021 (2)    | 0.0129 (17)  | 0.028 (2)    | -0.0013 (15)  | 0.0074 (16)   | -0.0077 (15)  |

# data reports

| O6               | 0.0129 (17)                               | 0.0142 (16)                               | 0.0135 (16)                               | 0.0006 (13)                                               | 0.0004 (13)                                                                | -0.0032 (13)                                                |
|------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|
| O7               | 0.0149 (17)                               | 0.0154 (16)                               | 0.0158 (17)                               | -0.0025 (14)                                              | -0.0009 (14)                                                               | -0.0044 (13)                                                |
| O8               | 0.0119 (17)                               | 0.0204 (18)                               | 0.0159 (17)                               | -0.0027 (14)                                              | -0.0009 (13)                                                               | -0.0058 (14)                                                |
| 09<br>010<br>011 | 0.0142 (18)<br>0.0152 (18)<br>0.0144 (17) | 0.0142 (17)<br>0.0130 (16)<br>0.0149 (16) | 0.0195 (18)<br>0.0150 (17)<br>0.0141 (16) | 0.0007 (13)<br>0.0036 (13)<br>-0.0007 (13)<br>0.0027 (14) | 0.0016 (14)<br>0.0010 (13)<br>0.0008 (13)                                  | -0.0003 (13)<br>-0.0023 (13)<br>-0.0074 (13)<br>0.0022 (12) |
| 012              | 0.0139 (19)                               | 0.0148 (17)                               | 0.0130 (17)                               | -0.0027 (14)                                              | $\begin{array}{c} -0.0010 (14) \\ -0.0042 (14) \\ 0.0006 (14) \end{array}$ | -0.0032 (13)                                                |
| 013              | 0.0131 (17)                               | 0.0162 (17)                               | 0.0169 (17)                               | 0.0012 (13)                                               |                                                                            | 0.0013 (13)                                                 |
| 014              | 0.0130 (17)                               | 0.0132 (16)                               | 0.0192 (18)                               | -0.0012 (13)                                              |                                                                            | -0.0018 (13)                                                |

### Geometric parameters (Å, °)

| Ce1—O6                  | 2.386 (4)   | Ce3—Si1 <sup>x</sup>   | 3.4591 (15) |
|-------------------------|-------------|------------------------|-------------|
| Ce1—O13                 | 2.439 (4)   | Si1—O1 <sup>iii</sup>  | 1.592 (4)   |
| Ce1—O12                 | 2.445 (4)   | Si1—O2                 | 1.624 (4)   |
| Ce1—O10                 | 2.480 (4)   | Si1—O3                 | 1.632 (4)   |
| Ce1—O14 <sup>i</sup>    | 2.486 (4)   | Si1—O4                 | 1.664 (4)   |
| Ce1—O9 <sup>ii</sup>    | 2.516 (4)   | Si1—Ce3 <sup>iii</sup> | 3.3138 (14) |
| Ce1—O11 <sup>i</sup>    | 2.663 (4)   | Sil—Ce4 <sup>iii</sup> | 3.4549 (14) |
| Ce1—Si4 <sup>i</sup>    | 3.2597 (15) | Si1—Ce3 <sup>xi</sup>  | 3.4591 (15) |
| Ce1—Si2                 | 3.3340 (15) | Si2—O5                 | 1.589 (4)   |
| Ce1—Si3                 | 3.4775 (14) | Si2—O7 <sup>i</sup>    | 1.636 (4)   |
| Ce1—Ce3                 | 3.9086 (4)  | Si2—O6                 | 1.642 (4)   |
| Ce1—Ce4 <sup>ii</sup>   | 3.9449 (4)  | Si2—O4 <sup>x</sup>    | 1.660 (4)   |
| Ce2—O8                  | 2.366 (4)   | Si2—Ce4 <sup>ii</sup>  | 3.3391 (14) |
| Ce2—O2                  | 2.370 (4)   | Si2—Ce3 <sup>i</sup>   | 3.3544 (14) |
| Ce2—O12                 | 2.376 (4)   | Si3—O8 <sup>v</sup>    | 1.595 (4)   |
| Ce2—O10                 | 2.494 (4)   | Si3—O9                 | 1.632 (4)   |
| Ce2—O10 <sup>iii</sup>  | 2.526 (4)   | Si3—O10                | 1.641 (4)   |
| Ce2—O13 <sup>iii</sup>  | 2.643 (4)   | Si3—O11 <sup>iii</sup> | 1.648 (4)   |
| Ce2—O9 <sup>iii</sup>   | 2.675 (4)   | Si3—Ce2 <sup>iii</sup> | 3.2386 (15) |
| Ce2—O3                  | 2.817 (4)   | Si4—O12 <sup>iv</sup>  | 1.588 (4)   |
| Ce2—Si1                 | 3.2118 (14) | Si4—O13                | 1.620 (4)   |
| Ce2—Si3 <sup>iii</sup>  | 3.2386 (15) | Si4—O14                | 1.631 (4)   |
| Ce2—Si4 <sup>iv</sup>   | 3.4514 (15) | Si4—O11                | 1.676 (4)   |
| Ce2—Ce1 <sup>iii</sup>  | 3.9450 (4)  | Si4—Ce1 <sup>ix</sup>  | 3.2597 (15) |
| Ce4—O5                  | 2.415 (4)   | Si4—Ce2 <sup>iv</sup>  | 3.4514 (15) |
| Ce4—O1                  | 2.420 (4)   | O1—Si1 <sup>iii</sup>  | 1.593 (4)   |
| Ce4—O3 <sup>v</sup>     | 2.517 (4)   | O1—Ce3 <sup>vii</sup>  | 2.396 (4)   |
| Ce4—O7 <sup>vi</sup>    | 2.576 (4)   | O2—Ce3 <sup>iii</sup>  | 2.490 (4)   |
| Ce4—O7 <sup>vii</sup>   | 2.603 (4)   | O3—Ce4 <sup>v</sup>    | 2.517 (4)   |
| Ce4—O8 <sup>v</sup>     | 2.655 (4)   | O3—Ce3 <sup>iv</sup>   | 2.534 (4)   |
| Ce4—O14 <sup>vi</sup>   | 2.681 (4)   | O4—Si2 <sup>xi</sup>   | 1.660 (4)   |
| Ce4—O9                  | 2.749 (4)   | O4—Ce3 <sup>iii</sup>  | 2.705 (4)   |
| Ce4—O6 <sup>viii</sup>  | 2.812 (4)   | O6—Ce4 <sup>ii</sup>   | 2.812 (4)   |
| Ce4—Si3                 | 3.2807 (14) | O7—Si2 <sup>ix</sup>   | 1.636 (4)   |
| Ce4—Si2 <sup>viii</sup> | 3.3391 (14) | O7—Ce4 <sup>xii</sup>  | 2.576 (4)   |
| Ce4—Si1 <sup>iii</sup>  | 3.4549 (14) | O7—Ce4 <sup>vii</sup>  | 2.603 (4)   |

| Ce3—O1 <sup>vii</sup>                  | 2.396 (4)                | O8—Si3 <sup>v</sup>                       | 1.595 (4)   |
|----------------------------------------|--------------------------|-------------------------------------------|-------------|
| Ce3—O7                                 | 2.457 (4)                | O8—Ce4 <sup>v</sup>                       | 2.655 (4)   |
| Ce3—O2 <sup>iii</sup>                  | 2.490 (4)                | O9—Ce1 <sup>viii</sup>                    | 2.516 (4)   |
| Ce3—O3 <sup>iv</sup>                   | 2.534 (4)                | O9—Ce2 <sup>iii</sup>                     | 2.675 (4)   |
| Ce3—06                                 | 2.555 (4)                | O10—Ce2 <sup>iii</sup>                    | 2.526 (4)   |
| $Ce_3 = 013$                           | 2.632(4)                 | 011 - 53                                  | 1.648(4)    |
| $Ce_{3}$ 014                           | 2.632(1)<br>2.687(4)     | $O11$ $Ce^{1ix}$                          | 2 663 (4)   |
| $C_{2}^{3} O_{1}^{iii}$                | 2.007(4)                 | O12 Sidiv                                 | 2.003(4)    |
| $C_{23}$ Si4                           | 2.703(+)                 | O12 - O12                                 | 1.500(4)    |
| $C_{e3} = 514$                         | 3.2707(13)               | $O13 - Ce2^{m}$                           | 2.043(4)    |
|                                        | 3.3138 (14)              |                                           | 2.486 (4)   |
| $Ce3-Si2^{ix}$                         | 3.3545 (14)              | O14—Ce4 <sup>xii</sup>                    | 2.681 (4)   |
|                                        |                          |                                           |             |
| O6—Ce1—O13                             | 80.46 (13)               | $O1^{vn}$ —Ce3—O13                        | 158.15 (12) |
| O6—Ce1—O12                             | 147.59 (13)              | O7—Ce3—O13                                | 128.05 (12) |
| O13—Ce1—O12                            | 81.45 (13)               | O2 <sup>iii</sup> —Ce3—O13                | 61.06 (12)  |
| O6—Ce1—O10                             | 127.63 (12)              | O3 <sup>iv</sup> —Ce3—O13                 | 92.21 (12)  |
| O13—Ce1—O10                            | 73.40 (13)               | O6—Ce3—O13                                | 73.85 (12)  |
| O12-Ce1-O10                            | 71.25 (12)               | O1 <sup>vii</sup> —Ce3—O14                | 134.41 (12) |
| O6-Ce1-014 <sup>i</sup>                | 75.12 (13)               | O7—Ce3—O14                                | 71.46 (12)  |
| O13—Ce1—O14 <sup>i</sup>               | 152.98 (13)              | O2 <sup>iii</sup> —Ce3—O14                | 109.22 (12) |
| O12—Ce1—O14 <sup>i</sup>               | 113.96 (13)              | O3 <sup>iv</sup> —Ce3—O14                 | 64.76 (12)  |
| O10-Ce1-O14 <sup>i</sup>               | 131.49 (12)              | O6—Ce3—O14                                | 119.09 (12) |
| 06—Ce1—O9 <sup>ii</sup>                | 70.85 (13)               | O13—Ce3—O14                               | 58.17 (12)  |
| 013—Ce1—O9 <sup>ii</sup>               | 87 75 (13)               | $01^{\text{vii}}$ Ce3 $04^{\text{vii}}$   | 73 44 (12)  |
| $012 - Ce1 - O9^{ii}$                  | 81 79 (12)               | $07$ —Ce3— $04^{iii}$                     | 84 49 (12)  |
| $012 - Ce1 - O9^{ii}$                  | 148 87 (13)              | $0^{2^{11}}$ Ce3 $0^{4^{11}}$             | 58 16 (11)  |
| $014^{i}$ Cel $09^{ii}$                | 73 55 (13)               | $O_2^{iv}$ Ce <sup>3</sup> $O_4^{iii}$    | 152 59 (11) |
| $06 Cel 011^{i}$                       | 133.66(12)               | $O_{1} = C_{2} = O_{1}$                   | 105.35(11)  |
|                                        | 135.00(12)<br>145.82(12) | $012$ Co2 $04^{iii}$                      | 105.55(12)  |
| 012 Col $011$                          | (143.82(12))             | $013 - Ce_{3} - 04^{iii}$                 | 113.11(11)  |
|                                        | 09.02(12)                | 014 - 023 - 04                            | 127.02(11)  |
|                                        | 80.90 (11)               | $01^{-1}$ Ce3—S14                         | 154.61 (9)  |
|                                        | 59.92 (12)               | $0/-Ce_3-Si_4$                            | 101.12 (9)  |
| $O9^n$ —Cel—O11 <sup>1</sup>           | 104.08 (12)              | $O2^{m}$ —Ce3—S14                         | 87.58 (9)   |
| O6—Cel—Si4 <sup>1</sup>                | 104.09 (9)               | $O3^{1v}$ —Ce3—Si4                        | 72.78 (9)   |
| O13—Ce1—Si4 <sup>1</sup>               | 171.06 (9)               | O6—Ce3—Si4                                | 93.50 (9)   |
| O12—Ce1—Si4 <sup>i</sup>               | 90.92 (10)               | O13—Ce3—Si4                               | 29.31 (9)   |
| O10—Ce1—Si4 <sup>i</sup>               | 108.63 (9)               | O14—Ce3—Si4                               | 29.70 (8)   |
| O14 <sup>i</sup> —Ce1—Si4 <sup>i</sup> | 29.22 (9)                | O4 <sup>iii</sup> —Ce3—Si4                | 130.95 (8)  |
| O9 <sup>ii</sup> —Ce1—Si4 <sup>i</sup> | 86.55 (9)                | O1 <sup>vii</sup> —Ce3—Si1 <sup>iii</sup> | 96.03 (9)   |
| O11 <sup>i</sup> —Ce1—Si4 <sup>i</sup> | 30.83 (8)                | O7—Ce3—Si1 <sup>iii</sup>                 | 110.56 (9)  |
| O6—Ce1—Si2                             | 27.50 (9)                | O2 <sup>iii</sup> —Ce3—Si1 <sup>iii</sup> | 28.21 (9)   |
| O13—Ce1—Si2                            | 98.21 (9)                | O3 <sup>iv</sup> —Ce3—Si1 <sup>iii</sup>  | 171.84 (9)  |
| O12—Ce1—Si2                            | 174.13 (9)               | O6—Ce3—Si1 <sup>iii</sup>                 | 88.46 (9)   |
| O10—Ce1—Si2                            | 114.33 (9)               | O13—Ce3—Si1 <sup>iii</sup>                | 86.88 (9)   |
| O14 <sup>i</sup> —Ce1—Si2              | 64.12 (9)                | O14—Ce3—Si1 <sup>iii</sup>                | 121.00 (8)  |
| O9 <sup>ii</sup> —Ce1—Si2              | 92.34 (9)                | O4 <sup>iii</sup> —Ce3—Si1 <sup>iii</sup> | 29.98 (8)   |
| $O11^{i}$ —Ce1—Si2                     | 112.92 (9)               | Si4—Ce3—Si1 <sup>iii</sup>                | 109.25 (3)  |
| $Si4^{i}$ Ce1—Si2                      | 88 90 (4)                | $01^{\text{vii}}$ Ce3 Si2 <sup>ix</sup>   | 93 12 (9)   |
| 011 001 012                            | (1) (1)                  | 01 003 -012                               | 13.14 (9)   |

| O6—Ce1—Si3                              | 116.03 (9)  | O7—Ce3—Si2 <sup>ix</sup>                                           | 27.57 (9)   |
|-----------------------------------------|-------------|--------------------------------------------------------------------|-------------|
| O13—Ce1—Si3                             | 91.87 (10)  | O2 <sup>iii</sup> —Ce3—Si2 <sup>ix</sup>                           | 110.34 (9)  |
| O12—Ce1—Si3                             | 91.19 (9)   | O3 <sup>iv</sup> —Ce3—Si2 <sup>ix</sup>                            | 95.45 (9)   |
| O10—Ce1—Si3                             | 25.65 (9)   | O6—Ce3—Si2 <sup>ix</sup>                                           | 177.57 (8)  |
| O14 <sup>i</sup> —Ce1—Si3               | 109.06 (9)  | O13—Ce3—Si2 <sup>ix</sup>                                          | 108.41 (9)  |
| O9 <sup>ii</sup> —Ce1—Si3               | 172.95 (9)  | O14—Ce3—Si2 <sup>ix</sup>                                          | 62.18 (8)   |
| O11 <sup>i</sup> —Ce1—Si3               | 72.54 (8)   | O4 <sup>iii</sup> —Ce3—Si2 <sup>ix</sup>                           | 74.63 (9)   |
| Si4 <sup>i</sup> —Ce1—Si3               | 92.94 (3)   | Si4—Ce3—Si2 <sup>ix</sup>                                          | 88.27 (4)   |
| Si2—Ce1—Si3                             | 94.68 (3)   | Si1 <sup>iii</sup> —Ce3—Si2 <sup>ix</sup>                          | 92.53 (3)   |
| O6—Ce1—Ce3                              | 39.25 (9)   | O1 <sup>vii</sup> —Ce3—Si1 <sup>x</sup>                            | 23.77 (9)   |
| O13—Ce1—Ce3                             | 41.41 (9)   | O7—Ce3—Si1 <sup>x</sup>                                            | 92.53 (9)   |
| O12—Ce1—Ce3                             | 119.59 (9)  | O2 <sup>iii</sup> —Ce3—Si1 <sup>x</sup>                            | 93.20 (9)   |
| O10—Ce1—Ce3                             | 100.84 (9)  | O3 <sup>iv</sup> —Ce3—Si1 <sup>x</sup>                             | 96.79 (9)   |
| O14 <sup>i</sup> —Ce1—Ce3               | 114.11 (9)  | O6—Ce3—Si1 <sup>x</sup>                                            | 68.02 (9)   |
| O9 <sup>ii</sup> —Ce1—Ce3               | 78.88 (9)   | O13—Ce3—Si1 <sup>x</sup>                                           | 139.39 (9)  |
| O11 <sup>i</sup> —Ce1—Ce3               | 171.37 (9)  | O14—Ce3—Si1 <sup>x</sup>                                           | 157.57 (8)  |
| Si4 <sup>i</sup> —Ce1—Ce3               | 143.27 (3)  | O4 <sup>iii</sup> —Ce3—Si1 <sup>x</sup>                            | 64.36 (8)   |
| Si2—Ce1—Ce3                             | 58.60 (3)   | Si4—Ce3—Si1 <sup>x</sup>                                           | 160.04 (4)  |
| Si3—Ce1—Ce3                             | 105.38 (2)  | Si1 <sup>iii</sup> —Ce3—Si1 <sup>x</sup>                           | 78.82 (4)   |
| O6—Ce1—Ce4 <sup>ii</sup>                | 44.83 (9)   | $Si2^{ix}$ —Ce3—Si1 <sup>x</sup>                                   | 110.00 (3)  |
| O13—Ce1—Ce4 <sup>ii</sup>               | 111.23 (9)  | $O1^{iii}$ —Si1—O2                                                 | 112.2 (2)   |
| O12—Ce1—Ce4 <sup>ii</sup>               | 120.79 (9)  | $O1^{iii}$ —Si1—O3                                                 | 116.1 (2)   |
| O10—Ce1—Ce4 <sup>ii</sup>               | 167.15 (9)  | 02—Si1—O3                                                          | 106.2 (2)   |
| O14 <sup>i</sup> —Ce1—Ce4 <sup>ii</sup> | 42.09 (9)   | $O1^{iii}$ —Si1—O4                                                 | 108.8 (2)   |
| O9 <sup>ii</sup> —Ce1—Ce4 <sup>ii</sup> | 43.77 (9)   | O2—Si1—O4                                                          | 100.67 (19) |
| O11 <sup>i</sup> —Ce1—Ce4 <sup>ii</sup> | 98.80 (8)   | O3—Si1—O4                                                          | 111.8 (2)   |
| Si4 <sup>i</sup> —Ce1—Ce4 <sup>ii</sup> | 68.76 (2)   | O1 <sup>iii</sup> —Si1—Ce2                                         | 126.94 (14) |
| Si2—Ce1—Ce4 <sup>ii</sup>               | 53.82 (2)   | O2—Si1—Ce2                                                         | 45.33 (13)  |
| Si3—Ce1—Ce4 <sup>ii</sup>               | 142.11 (3)  | O3—Si1—Ce2                                                         | 61.23 (15)  |
| Ce3—Ce1—Ce4 <sup>ii</sup>               | 77.595 (9)  | O4—Si1—Ce2                                                         | 121.26 (15) |
| O8—Ce2—O2                               | 107.78 (13) | O1 <sup>iii</sup> —Si1—Ce3 <sup>iii</sup>                          | 125.40 (15) |
| O8—Ce2—O12                              | 79.73 (13)  | O2—Si1—Ce3 <sup>iii</sup>                                          | 46.43 (13)  |
| O2—Ce2—O12                              | 144.59 (13) | O3—Si1—Ce3 <sup>iii</sup>                                          | 118.24 (15) |
| 08—Ce2—O10                              | 83.10 (13)  | O4—Si1—Ce3 <sup>iii</sup>                                          | 54.31 (13)  |
| O2—Ce2—O10                              | 142.07 (12) | Ce2—Si1—Ce3 <sup>iii</sup>                                         | 77.32 (3)   |
| 012—Ce2—O10                             | 72.15 (13)  | $O1^{iii}$ —Si1—Ce4 <sup>iii</sup>                                 | 38.46 (14)  |
| 08—Ce2—010 <sup>iii</sup>               | 152.66 (13) | O2—Si1—Ce4 <sup>iii</sup>                                          | 79.83 (15)  |
| $02-Ce^2-010^{iii}$                     | 85.76 (13)  | O3—Si1—Ce4 <sup>iii</sup>                                          | 108.61 (15) |
| 012—Ce2—O10 <sup>iii</sup>              | 103.20 (12) | O4—Si1—Ce4 <sup>iii</sup>                                          | 137.53 (15) |
| $010$ —Ce2— $010^{iii}$                 | 72.34 (14)  | Ce2—Si1—Ce4 <sup>iii</sup>                                         | 89.45 (3)   |
| $08-Ce^2-013^{iii}$                     | 95 55 (13)  | Ce <sup>3</sup> <sup>iii</sup> —Si1—Ce <sup>4</sup> <sup>iii</sup> | 114 92 (4)  |
| $02 - Ce^2 - 013^{iii}$                 | 62 31 (12)  | $01^{iii}$ Si1 Ce $3^{xi}$                                         | 37 34 (13)  |
| 012—Ce2—O13 <sup>iii</sup>              | 152.92(13)  | 02—Si1—Ce3 <sup>xi</sup>                                           | 118 77 (15) |
| $010 - Ce^2 - 013^{iii}$                | 80.83 (12)  | $03$ —Si1—Ce $3^{xi}$                                              | 133.73 (16) |
| $010^{iii}$ —Ce2—013 <sup>iii</sup>     | 69 29 (12)  | $04$ —Si1—Ce $3^{xi}$                                              | 71 50 (14)  |
| $08-Ce^2-O^{9iii}$                      | 144 80 (13) | $Ce^2$ —Si1— $Ce^{3xi}$                                            | 158 39 (5)  |
| $02 - Ce^2 - O^{3ii}$                   | 77 89 (13)  | $Ce^{3^{iii}}$ Sil—Ce $3^{xi}$                                     | 101 18 (4)  |
| $012 - Ce^2 - O^{9iii}$                 | 77 40 (13)  | $Ce4^{iii}$ —Si1—Ce3 <sup>xi</sup>                                 | 71 44 (3)   |
| 012 -002-07                             | (15)        |                                                                    | (3) דד.1    |

| O10—Ce2—O9 <sup>iii</sup>                  | 114.27 (12) | O5—Si2—O7 <sup>i</sup>                     | 110.3 (2)   |
|--------------------------------------------|-------------|--------------------------------------------|-------------|
| O10 <sup>iii</sup> —Ce2—O9 <sup>iii</sup>  | 60.08 (12)  | O5—Si2—O6                                  | 113.3 (2)   |
| O13 <sup>iii</sup> —Ce2—O9 <sup>iii</sup>  | 116.64 (12) | O7 <sup>i</sup> —Si2—O6                    | 105.8 (2)   |
| O8—Ce2—O3                                  | 76.47 (13)  | O5—Si2—O4 <sup>x</sup>                     | 113.3 (2)   |
| O2—Ce2—O3                                  | 59.52 (11)  | O7 <sup>i</sup> —Si2—O4 <sup>x</sup>       | 108.5 (2)   |
| O12—Ce2—O3                                 | 90.43 (12)  | O6—Si2—O4 <sup>x</sup>                     | 105.2 (2)   |
| O10—Ce2—O3                                 | 155.27 (12) | O5—Si2—Ce1                                 | 72.52 (17)  |
| O10 <sup>iii</sup> —Ce2—O3                 | 130.15 (12) | O7 <sup>i</sup> —Si2—Ce1                   | 111.94 (15) |
| O13 <sup>iii</sup> —Ce2—O3                 | 114.59 (11) | O6—Si2—Ce1                                 | 42.13 (13)  |
| O9 <sup>iii</sup> —Ce2—O3                  | 77.30 (11)  | O4 <sup>x</sup> —Si2—Ce1                   | 133.61 (15) |
| O8—Ce2—Si1                                 | 94.61 (10)  | O5—Si2—Ce4 <sup>ii</sup>                   | 123.40 (16) |
| O2—Ce2—Si1                                 | 29.17 (9)   | O7 <sup>i</sup> —Si2—Ce4 <sup>ii</sup>     | 48.86 (14)  |
| O12—Ce2—Si1                                | 118.01 (10) | O6—Si2—Ce4 <sup>ii</sup>                   | 57.20 (13)  |
| O10—Ce2—Si1                                | 169.12 (8)  | O4 <sup>x</sup> —Si2—Ce4 <sup>ii</sup>     | 123.07 (14) |
| O10 <sup>iii</sup> —Ce2—Si1                | 107.23 (9)  | Ce1—Si2—Ce4 <sup>ii</sup>                  | 72.48 (3)   |
| O13 <sup>iii</sup> —Ce2—Si1                | 88.84 (9)   | O5—Si2—Ce3 <sup>i</sup>                    | 67.40 (16)  |
| O9 <sup>iii</sup> —Ce2—Si1                 | 73.43 (9)   | O7 <sup>i</sup> —Si2—Ce3 <sup>i</sup>      | 44.01 (14)  |
| O3—Ce2—Si1                                 | 30.51 (8)   | O6—Si2—Ce3 <sup>i</sup>                    | 114.70 (14) |
| O8—Ce2—Si3 <sup>iii</sup>                  | 169.04 (9)  | O4 <sup>x</sup> —Si2—Ce3 <sup>i</sup>      | 135.93 (15) |
| O2—Ce2—Si3 <sup>iii</sup>                  | 81.72 (10)  | Ce1—Si2—Ce3 <sup>i</sup>                   | 89.90 (3)   |
| O12—Ce2—Si3 <sup>iii</sup>                 | 89.35 (10)  | Ce4 <sup>ii</sup> —Si2—Ce3 <sup>i</sup>    | 69.54 (3)   |
| O10—Ce2—Si3 <sup>iii</sup>                 | 92.69 (9)   | O8 <sup>v</sup> —Si3—O9                    | 109.9 (2)   |
| O10 <sup>iii</sup> —Ce2—Si3 <sup>iii</sup> | 29.96 (9)   | O8 <sup>v</sup> —Si3—O10                   | 111.7 (2)   |
| O13 <sup>iii</sup> —Ce2—Si3 <sup>iii</sup> | 93.75 (9)   | O9—Si3—O10                                 | 105.6 (2)   |
| O9 <sup>iii</sup> —Ce2—Si3 <sup>iii</sup>  | 30.16 (9)   | O8 <sup>v</sup> —Si3—O11 <sup>iii</sup>    | 112.5 (2)   |
| O3—Ce2—Si3 <sup>iii</sup>                  | 104.81 (8)  | O9—Si3—O11 <sup>iii</sup>                  | 110.1 (2)   |
| Si1—Ce2—Si3 <sup>iii</sup>                 | 91.36 (4)   | O10—Si3—O11 <sup>iii</sup>                 | 106.8 (2)   |
| O8—Ce2—Si4 <sup>iv</sup>                   | 72.98 (10)  | O8 <sup>v</sup> —Si3—Ce2 <sup>iii</sup>    | 128.57 (15) |
| O2—Ce2—Si4 <sup>iv</sup>                   | 123.96 (9)  | O9—Si3—Ce2 <sup>iii</sup>                  | 55.43 (14)  |
| O12—Ce2—Si4 <sup>iv</sup>                  | 23.56 (9)   | O10—Si3—Ce2 <sup>iii</sup>                 | 50.22 (14)  |
| O10—Ce2—Si4 <sup>iv</sup>                  | 93.93 (9)   | O11 <sup>iii</sup> —Si3—Ce2 <sup>iii</sup> | 118.79 (15) |
| O10 <sup>iii</sup> —Ce2—Si4 <sup>iv</sup>  | 119.59 (8)  | O8 <sup>v</sup> —Si3—Ce4                   | 53.26 (15)  |
| O13 <sup>iii</sup> —Ce2—Si4 <sup>iv</sup>  | 167.97 (9)  | O9—Si3—Ce4                                 | 56.77 (15)  |
| O9 <sup>iii</sup> —Ce2—Si4 <sup>iv</sup>   | 75.37 (9)   | O10—Si3—Ce4                                | 121.00 (14) |
| O3—Ce2—Si4 <sup>iv</sup>                   | 66.98 (8)   | O11 <sup>iii</sup> —Si3—Ce4                | 132.16 (15) |
| Si1—Ce2—Si4 <sup>iv</sup>                  | 95.56 (3)   | Ce2 <sup>iii</sup> —Si3—Ce4                | 92.12 (4)   |
| Si3 <sup>iii</sup> —Ce2—Si4 <sup>iv</sup>  | 97.33 (3)   | O8 <sup>v</sup> —Si3—Ce1                   | 71.73 (15)  |
| O8—Ce2—Ce1 <sup>iii</sup>                  | 132.77 (9)  | O9—Si3—Ce1                                 | 112.56 (14) |
| O2—Ce2—Ce1 <sup>iii</sup>                  | 56.85 (9)   | O10—Si3—Ce1                                | 40.86 (13)  |
| O12—Ce2—Ce1 <sup>iii</sup>                 | 140.76 (9)  | O11 <sup>iii</sup> —Si3—Ce1                | 132.06 (15) |
| O10—Ce2—Ce1 <sup>iii</sup>                 | 88.69 (9)   | Ce2 <sup>iii</sup> —Si3—Ce1                | 71.85 (3)   |
| O10 <sup>iii</sup> —Ce2—Ce1 <sup>iii</sup> | 37.59 (8)   | Ce4—Si3—Ce1                                | 90.17 (3)   |
| O13 <sup>iii</sup> —Ce2—Ce1 <sup>iii</sup> | 37.25 (9)   | O12 <sup>iv</sup> —Si4—O13                 | 113.3 (2)   |
| O9 <sup>iiii</sup> —Ce2—Ce1 <sup>iii</sup> | 80.15 (8)   | O12 <sup>iv</sup> —Si4—O14                 | 117.4 (2)   |
| O3—Ce2—Ce1 <sup>iii</sup>                  | 115.42 (8)  | O13—Si4—O14                                | 105.4 (2)   |
| Si1—Ce2—Ce1 <sup>iii</sup>                 | 85.07 (3)   | O12 <sup>iv</sup> —Si4—O11                 | 108.3 (2)   |
| Si3 <sup>iii</sup> —Ce2—Ce1 <sup>iii</sup> | 56.89 (2)   | O13—Si4—O11                                | 109.4 (2)   |
| Si4 <sup>iv</sup> —Ce2—Ce1 <sup>iii</sup>  | 154.20 (3)  | O14—Si4—O11                                | 102.3 (2)   |

| O5—Ce4—O1                                 | 85.88 (13)  | O12 <sup>iv</sup> —Si4—Ce1 <sup>ix</sup>  | 124.17 (16) |
|-------------------------------------------|-------------|-------------------------------------------|-------------|
| O5—Ce4—O3 <sup>v</sup>                    | 89.90 (13)  | O13—Si4—Ce1 <sup>ix</sup>                 | 122.54 (15) |
| O1—Ce4—O3 <sup>v</sup>                    | 147.59 (13) | O14—Si4—Ce1 <sup>ix</sup>                 | 48.06 (14)  |
| O5Ce4O7 <sup>vi</sup>                     | 142.34 (14) | O11—Si4—Ce1 <sup>ix</sup>                 | 54.50 (13)  |
| O1—Ce4—O7 <sup>vi</sup>                   | 89.55 (12)  | O12 <sup>iv</sup> —Si4—Ce3                | 122.57 (15) |
| O3 <sup>v</sup> —Ce4—O7 <sup>vi</sup>     | 74.52 (12)  | O13—Si4—Ce3                               | 52.68 (14)  |
| O5Ce4O7 <sup>vii</sup>                    | 79.14 (14)  | O14—Si4—Ce3                               | 54.71 (15)  |
| O1—Ce4—O7 <sup>vii</sup>                  | 68.22 (12)  | O11—Si4—Ce3                               | 129.08 (15) |
| O3 <sup>v</sup> —Ce4—O7 <sup>vii</sup>    | 79.42 (12)  | Cel <sup>ix</sup> —Si4—Ce3                | 92.60 (4)   |
| O7 <sup>vi</sup> —Ce4—O7 <sup>vii</sup>   | 64.55 (13)  | O12 <sup>iv</sup> —Si4—Ce2 <sup>iv</sup>  | 36.72 (14)  |
| O5—Ce4—O8 <sup>v</sup>                    | 66.01 (13)  | O13—Si4—Ce2 <sup>iv</sup>                 | 106.37 (15) |
| O1—Ce4—O8 <sup>v</sup>                    | 128.92 (13) | O14—Si4—Ce2 <sup>iv</sup>                 | 86.82 (14)  |
| O3 <sup>v</sup> —Ce4—O8 <sup>v</sup>      | 77.17 (12)  | O11—Si4—Ce2 <sup>iv</sup>                 | 138.90 (15) |
| $O7^{vi}$ —Ce4—O8 <sup>v</sup>            | 138.50 (12) | Ce1 <sup>ix</sup> —Si4—Ce2 <sup>iv</sup>  | 118.44 (4)  |
| $O7^{vii}$ —Ce4—O8 <sup>v</sup>           | 137.57 (12) | Ce3—Si4—Ce2 <sup>iv</sup>                 | 88.97 (3)   |
| O5—Ce4—O14 <sup>vi</sup>                  | 134.07 (13) | Si1 <sup>iii</sup> —O1—Ce3 <sup>vii</sup> | 118.88 (19) |
| O1—Ce4—O14 <sup>vi</sup>                  | 135.66 (12) | Sil <sup>iii</sup> —O1—Ce4                | 117.4 (2)   |
| O3 <sup>v</sup> —Ce4—O14 <sup>vi</sup>    | 65.09 (12)  | Ce3 <sup>vii</sup> —O1—Ce4                | 113.89 (15) |
| $O7^{vi}$ —Ce4—O14 <sup>vi</sup>          | 69.81 (12)  | Si1—O2—Ce2                                | 105.51 (18) |
| O7 <sup>vii</sup> —Ce4—O14 <sup>vi</sup>  | 127.90 (12) | Si1—O2—Ce3 <sup>iii</sup>                 | 105.37 (18) |
| O8 <sup>v</sup> —Ce4—O14 <sup>vi</sup>    | 70.98 (12)  | Ce2—O2—Ce3 <sup>iii</sup>                 | 114.04 (15) |
| O5—Ce4—O9                                 | 101.90 (14) | Si1—O3—Ce4 <sup>v</sup>                   | 122.03 (19) |
| O1—Ce4—O9                                 | 89.74 (12)  | Si1—O3—Ce3 <sup>iv</sup>                  | 125.0 (2)   |
| O3 <sup>v</sup> —Ce4—O9                   | 122.51 (12) | Ce4 <sup>v</sup> —O3—Ce3 <sup>iv</sup>    | 98.17 (13)  |
| O7 <sup>vi</sup> —Ce4—O9                  | 115.46 (11) | Si1—O3—Ce2                                | 88.26 (16)  |
| O7 <sup>vii</sup> —Ce4—O9                 | 157.89 (12) | Ce4 <sup>v</sup> —O3—Ce2                  | 98.75 (13)  |
| O8 <sup>v</sup> —Ce4—O9                   | 58.52 (12)  | Ce3 <sup>iv</sup> —O3—Ce2                 | 123.54 (14) |
| O14 <sup>vi</sup> —Ce4—O9                 | 66.93 (12)  | Si2 <sup>xi</sup> —O4—Si1                 | 129.2 (2)   |
| O5—Ce4—O6 <sup>viii</sup>                 | 150.12 (13) | Si2 <sup>xi</sup> —O4—Ce3 <sup>iii</sup>  | 133.16 (19) |
| O1—Ce4—O6 <sup>viii</sup>                 | 70.33 (11)  | Si1—O4—Ce3 <sup>iii</sup>                 | 95.71 (16)  |
| O3 <sup>v</sup> —Ce4—O6 <sup>viii</sup>   | 119.89 (11) | Si2—O5—Ce4                                | 138.9 (2)   |
| O7 <sup>vi</sup> —Ce4—O6 <sup>viii</sup>  | 57.87 (11)  | Si2—O6—Ce1                                | 110.37 (18) |
| O7 <sup>vii</sup> —Ce4—O6 <sup>viii</sup> | 106.96 (11) | Si2—O6—Ce3                                | 115.34 (19) |
| O8 <sup>v</sup> —Ce4—O6 <sup>viii</sup>   | 115.35 (11) | Ce1—O6—Ce3                                | 104.53 (14) |
| $O14^{vi}$ —Ce4— $O6^{viii}$              | 65.44 (11)  | Si2—O6—Ce4 <sup>ii</sup>                  | 93.40 (16)  |
| O9—Ce4—O6 <sup>viii</sup>                 | 61.50 (11)  | Ce1—O6—Ce4 <sup>ii</sup>                  | 98.43 (12)  |
| O5—Ce4—Si3                                | 82.23 (11)  | Ce3—O6—Ce4 <sup>ii</sup>                  | 132.92 (14) |
| O1—Ce4—Si3                                | 110.48 (9)  | Si2 <sup>ix</sup> —O7—Ce3                 | 108.42 (18) |
| O3 <sup>v</sup> —Ce4—Si3                  | 100.71 (9)  | Si2 <sup>ix</sup> —O7—Ce4 <sup>xii</sup>  | 102.57 (19) |
| O7 <sup>vi</sup> —Ce4—Si3                 | 133.72 (8)  | Ce3—O7—Ce4 <sup>xii</sup>                 | 98.63 (13)  |
| O7 <sup>vii</sup> —Ce4—Si3                | 161.37 (9)  | Si2 <sup>ix</sup> —O7—Ce4 <sup>vii</sup>  | 123.2 (2)   |
| O8 <sup>v</sup> —Ce4—Si3                  | 28.79 (9)   | Ce3—O7—Ce4 <sup>vii</sup>                 | 105.80 (14) |
| O14 <sup>vi</sup> —Ce4—Si3                | 66.87 (9)   | Ce4 <sup>xii</sup> —O7—Ce4 <sup>vii</sup> | 115.45 (13) |
| O9—Ce4—Si3                                | 29.77 (8)   | Si3 <sup>v</sup> —O8—Ce2                  | 138.7 (2)   |
| O6 <sup>viii</sup> —Ce4—Si3               | 89.27 (8)   | Si3 <sup>v</sup> —O8—Ce4 <sup>v</sup>     | 97.95 (18)  |
| O5—Ce4—Si2 <sup>viii</sup>                | 163.01 (10) | Ce2—O8—Ce4 <sup>v</sup>                   | 107.50 (15) |
| O1—Ce4—Si2 <sup>viii</sup>                | 80.50 (9)   | Si3—O9—Ce1 <sup>viii</sup>                | 117.11 (19) |
| O3 <sup>v</sup> —Ce4—Si2 <sup>viii</sup>  | 96.17 (9)   | Si3—O9—Ce2 <sup>iii</sup>                 | 94.41 (17)  |
|                                           |             |                                           |             |

| O7 <sup>vi</sup> —Ce4—Si2 <sup>viii</sup>   | 28.57 (9)   | Ce1 <sup>viii</sup> —O9—Ce2 <sup>iii</sup> | 130.18 (16) |
|---------------------------------------------|-------------|--------------------------------------------|-------------|
| O7 <sup>vii</sup> —Ce4—Si2 <sup>viii</sup>  | 86.37 (9)   | Si3—O9—Ce4                                 | 93.46 (17)  |
| O8 <sup>v</sup> —Ce4—Si2 <sup>viii</sup>    | 130.82 (8)  | Ce1 <sup>viii</sup> —O9—Ce4                | 96.94 (13)  |
| O14 <sup>vi</sup> —Ce4—Si2 <sup>viii</sup>  | 62.47 (8)   | Ce2 <sup>iii</sup> —O9—Ce4                 | 119.87 (14) |
| O9—Ce4—Si2 <sup>viii</sup>                  | 88.21 (8)   | Si3—O10—Ce1                                | 113.49 (19) |
| O6 <sup>viii</sup> —Ce4—Si2 <sup>viii</sup> | 29.40 (8)   | Si3—O10—Ce2                                | 124.03 (18) |
| Si3—Ce4—Si2 <sup>viii</sup>                 | 112.00 (3)  | Ce1—O10—Ce2                                | 105.83 (14) |
| O5—Ce4—Si1 <sup>iii</sup>                   | 79.59 (10)  | Si3—O10—Ce2 <sup>iii</sup>                 | 99.82 (17)  |
| O1—Ce4—Si1 <sup>iii</sup>                   | 24.16 (9)   | Ce1—O10—Ce2 <sup>iii</sup>                 | 104.00 (12) |
| O3 <sup>v</sup> —Ce4—Si1 <sup>iii</sup>     | 166.44 (8)  | Ce2—O10—Ce2 <sup>iii</sup>                 | 107.66 (14) |
| O7 <sup>vi</sup> —Ce4—Si1 <sup>iii</sup>    | 108.85 (9)  | Si3 <sup>iii</sup> —O11—Si4                | 128.8 (2)   |
| O7 <sup>vii</sup> —Ce4—Si1 <sup>iii</sup>   | 90.11 (9)   | Si3 <sup>iii</sup> —O11—Ce1 <sup>ix</sup>  | 136.4 (2)   |
| O8 <sup>v</sup> —Ce4—Si1 <sup>iii</sup>     | 105.82 (9)  | Si4—O11—Ce1 <sup>ix</sup>                  | 94.67 (15)  |
| O14 <sup>vi</sup> —Ce4—Si1 <sup>iii</sup>   | 128.47 (9)  | Si4 <sup>iv</sup> —O12—Ce2                 | 119.7 (2)   |
| O9—Ce4—Si1 <sup>iii</sup>                   | 68.63 (8)   | Si4 <sup>iv</sup> —O12—Ce1                 | 124.8 (2)   |
| O6 <sup>viii</sup> —Ce4—Si1 <sup>iii</sup>  | 71.29 (8)   | Ce2—O12—Ce1                                | 110.77 (15) |
| Si3—Ce4—Si1 <sup>iii</sup>                  | 86.45 (3)   | Si4—O13—Ce1                                | 131.2 (2)   |
| Si2 <sup>viii</sup> —Ce4—Si1 <sup>iii</sup> | 91.70 (3)   | Si4—O13—Ce3                                | 98.00 (18)  |
| O1 <sup>vii</sup> —Ce3—O7                   | 71.08 (13)  | Ce1—O13—Ce3                                | 100.78 (13) |
| O1 <sup>vii</sup> —Ce3—O2 <sup>iii</sup>    | 115.42 (13) | Si4—O13—Ce2 <sup>iii</sup>                 | 118.1 (2)   |
| O7—Ce3—O2 <sup>iii</sup>                    | 134.51 (12) | Ce1—O13—Ce2 <sup>iii</sup>                 | 101.75 (14) |
| O1 <sup>vii</sup> —Ce3—O3 <sup>iv</sup>     | 81.85 (13)  | Ce3—O13—Ce2 <sup>iii</sup>                 | 101.24 (13) |
| O7—Ce3—O3 <sup>iv</sup>                     | 76.31 (12)  | Si4—O14—Ce1 <sup>ix</sup>                  | 102.72 (18) |
| O2 <sup>iii</sup> —Ce3—O3 <sup>iv</sup>     | 147.15 (12) | Si4—O14—Ce4 <sup>xii</sup>                 | 143.4 (2)   |
| O1 <sup>vii</sup> —Ce3—O6                   | 84.56 (12)  | Ce1 <sup>ix</sup> —O14—Ce4 <sup>xii</sup>  | 99.49 (13)  |
| O7—Ce3—O6                                   | 150.12 (11) | Si4—O14—Ce3                                | 95.60 (18)  |
| O2 <sup>iii</sup> —Ce3—O6                   | 71.43 (12)  | Ce1 <sup>ix</sup> —O14—Ce3                 | 131.95 (15) |
| O3 <sup>iv</sup> —Ce3—O6                    | 83.50 (12)  | Ce4 <sup>xii</sup> —O14—Ce3                | 90.65 (12)  |
|                                             |             |                                            |             |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*, -*y*+1, -*z*+1; (vi) *x*-1, *y*+1, *z*; (vii) -*x*+1, -*y*+1, -*z*; (viii) *x*, *y*+1, *z*; (ix) *x*+1, *y*, *z*; (ix) *x*, *y*, *z*-1; (ix) *x*+1, *y*-1, *z*.