ISSN 2414-3146

Received 21 November 2023
Accepted 24 November 2023

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: jasmone thiosemicarbazone; thiosemicarbazone; cis-jasmone derivative; crystalline modification; crystal structure; Hirshfeld analysis.

CCDC reference: 2310189

Structural data: full structural data are available from iucrdata.iucr.org

A second crystalline modification of 2-\{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene\}hydrazinecarbothioamide

Adriano Bof de Oliveira, ${ }^{\text {a* }}$ Leandro Bresolin, ${ }^{\text {b }}$ Vanessa Carratu Gervini, ${ }^{\text {b }}$ Johannes Beck $^{\text {c }}$ and Jörg Daniels ${ }^{\text {c }}$

${ }^{\text {a }}$ Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s / n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil, ${ }^{\text {b Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km }}$ 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, and 'Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany. *Correspondence e-mail: adriano@daad-alumni.de

A second crystalline modification of the title compound, $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}$ [common name: cis-jasmone thiosemicarbazone] was crystallized from tetrahydrofurane at room temperature. There is one crystallographic independent molecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio $=0.590(14): 0.410(14)]$. The thiosemicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the $\mathrm{N} / \mathrm{N} / \mathrm{C} / \mathrm{S} / \mathrm{N}$ atoms being 0.0463 (14) \AA [r.m.s.d. $=0.0324 \AA$], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to $0.0465(15) \AA$ [r.m.s.d. $=0.0338 \AA$]. The molecule is not planar due to the dihedral angle between these two fragments, which is $8.93(1)^{\circ}$, and due to the $s p^{3}$-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set motifs $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$, building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are $\mathrm{H} \cdots \mathrm{H}(67.8 \%), \mathrm{H} \cdots \mathrm{S} /$ $\mathrm{S} \cdots \mathrm{H}(15.0 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(8.5 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(5.6 \%)$ [only nondisordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thiosemicarbazone structure, the first one being published recently [Orsoni et al. (2020). Int. J. Mol. Sci. 21, 8681-8697] with the crystals obtained in ethanol at 273 K.

Chemical scheme

Structure description

The first references to the synthesis of thiosemicarbazone derivatives $\left[R_{1} R_{2} \mathrm{~N}-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{S})-\mathrm{N} R_{3} R_{4}\right]$ can be traced back to the beginning of the 1900s (Freund \& Schander, 1902) and since the report of Domagk et al. (1946) on the tuberculostatic effect of some compounds with this functional group, the biological activity of these molecules has been intensively studied, being one of the major approaches for this chemistry (for some examples, see: Acharya et al., 2021; Bajaj et al., 2021; Kanso et al., 2021; Siqueira et al., 2019). Concerning the cisjasmone thiosemicarbazone, it has been pointed out that this compound has antifungal activity (Orsoni et al., 2020; Jamiołkowska et al., 2022). As part of our studies on the thiosemicarbazone derivatives of natural products, the crystal structure and the Hirshfeld analysis of a new crystalline modification of the cis-jasmone thiosemicarbazone is reported herein.

The first crystalline modification of cis-jasmone thiosemicarbazone (Orsoni et al., 2020) [triclinic, $P \overline{1}, a=8.164$ (5), $b=15.645$ (9), $c=16.434$ (9) A, $\alpha=84.723$ (1), $\beta=82.036$ (1), $\gamma=84.632(1)^{\circ}$] will be designated from now on as the α-modification and α-JATSC. α-JATSC(A), α-JATSC(B) and α-JATSC(C) abbreviations will be used for the three crystallographically independent molecules in the asymmetric unit of the structure. The present work reports the second crystalline modification of the molecule, which will be designated from now on as the β-modification, or β-JATSC.

For the title compound, the β-crystalline modification of the cis-jasmone thiosemicarbazone, there is one molecule with all atoms in general positions in the asymmetric unit, which shows disorder in the cis-jasmone chain [s.o.f. $=0.590(14)$: 0.410 (14)]. The atoms with the higher s.o.f. are A-labelled and

Figure 1
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. Disordered atoms are drawn with 30% transparency and labelled $\mathrm{H} 8 A$, $\mathrm{C} 9 A$ and $\mathrm{C} 10 A$ [s.o.f. $=0.590(14)]$ and $\mathrm{H} 8 B, \mathrm{C} 9 B$ and $\mathrm{C} 10 B$ [s.o.f. $=$ 0.410 (14)]. All H atoms are drawn in ball and stick mode.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.90(3)$	$2.53(3)$	$3.4142(19)$	$166(2)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.85(3)$	$2.48(3)$	$3.325(2)$	$173(3)$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{~S} 1^{\mathrm{i}}$	$1.00(2)$	$2.93(2)$	$3.436(2)$	$112.2(16)$

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
those with the lower, B-labelled (Fig. 1). The thiosemicarbazone (TSC) entity is approximately planar, with the maximum deviation from the mean plane through the $\mathrm{N} 1 / \mathrm{N} 2 /$ $\mathrm{C} 12 / \mathrm{S} 1 / \mathrm{N} 3$ atoms being $0.0463(14) \AA$ for N 2 (r.m.s.d. $=$ $0.0324 \AA$). The TSC entity is attached to the C1-C5 fivemembered ring of the jasmone fragment, which is also almost planar, with the maximum deviation from the mean plane through the C atoms being 0.0465 (15) \AA for C2 (r.m.sd. $=$ $0.0338 \AA$). The molecule is not planar due the dihedral angle between these two entities, $8.93(1)^{\circ}$, and due to the $s p^{3}$ hybridized carbon atoms in the jasmone fragment. In addition, the torsion angles for the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 12 / \mathrm{S} 1$ and $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 12 / \mathrm{N} 3$ chains are 174.04 (15) and $-4.8(3)^{\circ}$, respectively.

In the crystal, the molecules are connected by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, forming rings with $R_{2}^{2}(8)$ graph-set motif, and by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S} / \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions, where rings of graph-set motif $R_{2}^{1}(7)$ are observed (Fig. 2, Table 1). The N1, N3 and C2 atoms act as hydrogen-bond donors and the S1 atoms act as hydrogen-bond acceptors, connecting the molecules into mono-periodic hydrogen-bonded ribbons along [010] (Fig. 3). No other strong intermolecular interactions are observed for the title compound, possibly due to the non-polar organic periphery of the cis-jasmone fragment, and only weak interactions, i.e., London dispersion forces can be suggested.

Figure 2
The molecular structure of the β-crystalline modification of the cisjasmone thiosemicarbazone showing the intermolecular hydrogenbonding interactions as dashed lines. The molecules are linked via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions, forming graph-set motifs of $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$. Disorder is not shown for clarity. [Symmetry codes: (i) $-x+1$, $y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.]

Figure 3
Graphical representation of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions in the title compound viewed along [100]. The interactions are drawn as dashed lines and connect the molecules along [010] with graph-set motifs of $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$, forming a mono-periodic hydrogenbonded ribbon. Disorder is not shown for clarity.

In the Hirshfeld surface analysis (Hirshfeld, 1977), the graphical representations and the two-dimensional Hirshfeld surface fingerprint (HSFP) were evaluated with Crystal Explorer (Wolff et al., 2012). The Hirshfeld surface analysis of the title compound considering the A-labelled atoms [s.o.f. $=$ 0.590 (14)] indicates that the most relevant intermolecular interactions for crystal cohesion are the following: $\mathrm{H} \cdots \mathrm{H}=$ 67.8%, (b) $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}=15.0 \%$, (c) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}=8.5 \%$ and

Figure 4
Two opposite side-views in separate figures of the Hirshfeld surface graphical representation $\left(d_{\text {norm }}\right)$ for the title compound. The surface is drawn with transparency, the molecule is drawn in ball and stick mode and the disorder is not shown for clarity. The regions with strongest intermolecular interactions are shown in red. ($d_{\text {norm }}$ range: -0.404 to 1.518.)

Figure 5
The Hirshfeld surface two-dimensional fingerprint plots for the title compound, showing the contacts in detail (cyan dots). The major contributions of the interactions to the crystal cohesion amount to (a) $\mathrm{H} \cdots \mathrm{H}=67.8 \%$, (b) $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}=15.0 \%$, (c) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}=8.5 \%$ and (d) $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}=5.6 \%$. The $d_{\mathrm{i}}\left(x\right.$-axis) and the $d_{\mathrm{e}}(y$-axis $)$ values are the closest internal and external distances from given points on the Hirshfeld surface (in A). Regarding the disorder, only the atoms with the highest s.o.f. were considered.
(d) $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}=5.6 \%$. For comparison, the contributions for the structure with the B-labelled atoms [s.o.f. $=0.410(14)$] amount to (a) $\mathrm{H} \cdots \mathrm{H}=68.3 \%$, (b) $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}=15.0 \%$, (c) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}=8.2 \%$ and $(d) \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}=5.5 \%$. Since no considerable differences between the values were observed, the evaluations and graphics were performed for the structure with the A-labelled atoms only. The graphical representation of the Hirshfeld surface $\left(d_{\text {norm }}\right)$ is drawn in a figure with two separate opposite side-views of the molecule with transparency and using a ball-and-stick model. The locations of the strongest intermolecular contacts, i.e, the regions around the H1, H3 and S1 atoms (Fig. 4) are indicated in red. These atoms are those involved in the $\mathrm{H} \cdots \mathrm{S}$ interactions shown in the previous figures (Figs. 2 and 3). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots (Fig. 5). The d_{i} (x-axis) and the d_{e} (y-axis) values are the closest internal and external distances from given points on the Hirshfeld surface (in \AA).

The crystal structure of the α-crystalline modification of the cis-jasmone thiosemicarbazone was reported recently (Orsoni et al., 2020). As already mentioned above, the α-modification has three crystallographically independent molecules in the asymmetric unit, namely α-JATSC(A), α-JATSC(B) and α-JATSC(C). In the crystal, the molecules are connected by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set motif $R_{2}^{2}(8)$, into mono-periodic hydrogen-bonded ribbons along [100]

Table 2
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ of the TSC entities for the α - and β-crystalline modifications of the cis-jasmone thiosemicarbazone.
α-JATSC (A) , α-JATSC (B) and α-JATSC(C) refer to the three crystallographically independent molecules in the α-crystalline modification of cis-jasmone thiosemicarbazone (Orsoni et al., 2020) (Fig. 6). β-JATSC refers to the β-crystalline modification of cis-jasmone thiosemicarbazone reported in this work (Fig. 1).

	Bond length	$\mathrm{N}=\mathrm{N}$	$\mathrm{N}-\mathrm{C}$
Compound			
α-JATSC(A)		$1.383(5)$	$1.305(5)$
α-JATSC(B)	$1.384(5)$	$1.349(5)$	
α-JATSC(C)	$1.400(5)$	$1.341(5)$	
β-JATSC	$1.388(2)$	$1.345(3)$	
			$1.795(5)$
		Torsion angle	$1.689(5)$
α-JATSC(A)	Atom chain 1	$-179.4(3)$	Atom chain 2
α-JATSC(B)	$\mathrm{N} 3 A-\mathrm{N} 2 A-\mathrm{C} 1 A-\mathrm{S} 1 A$	$180.0(3)$	$\mathrm{N} 3 A-\mathrm{N} 2 A-\mathrm{C} 1 A-\mathrm{N} 1 A$
α-JATSC(C)	$\mathrm{N} 3 B-\mathrm{N} 2 B-\mathrm{C} 1 B-\mathrm{S} 1 B$	$\mathrm{~N} 3 B-\mathrm{N} 2 B-\mathrm{C} 1 B-\mathrm{N} 1 B$	
β-JATSC	$\mathrm{N} 3 C-\mathrm{N} 2 C-\mathrm{C} 1 C-\mathrm{S} 1 C$	$\mathrm{~N} 3 C-\mathrm{N} 2 C-\mathrm{C} 1 C-\mathrm{N} 1 C$	

(Fig. 6). The α-modification contains two crystallographically different strands. Within one of the strands, inversion centres are located at the centroids of every eight-membered $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ ring, while the other strand has no internal symmetry. The β-modification has only one independent strand that has no internal symmetry. For a comparison of selected geometric parameters of the α - and β-modifications of cis-jasmone thiosemicarbazone, see Table 2. The crystal structures of non-substituted thiosemicarbazones attached to non-polar organic groups have been studied by our group, such as the structures of the (-)-menthone (Oliveira et al., 2014) and the tetralone thiosemicarbazone derivatives (Oliveira et al., 2012, 2017). In the structure of the (-)-menthone thiosemicarbazone, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions, forming rings with graph-set motif $R_{2}^{2}(8)$, into mono-periodic hydrogen-bonded ribbons along [100]. For the structure of the tetralone thiossemicarbazone, the molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$

Figure 6
Crystal structure section of the α-cis-jasmone thiosemicarbazone (Orsoni et al., 2020) viewed along [001]. Selected atoms of the TSC entities are labelled to indicate the three crystallographically independent molecules [α-JATSC (A); α-JATSC(B); α-JATSC(C)]. The $\mathrm{N}-\mathrm{H} \cdots$. S intermolecular interactions, forming rings with graph-set motif $R_{2}^{2}(8)$, are drawn as dashed lines and connect the molecules into mono-periodic H -bonded ribbons along [100].
and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions along [11 0], where rings of graph-set motifs $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$ are observed. The same supramolecular arrangement was observed for both structures, forming a structural pattern for these entities (Fig. 7). This packing pattern is common for non-substituted thiosemicarbazones attached to non-polar organic entities, as observed in this work (Fig. 3).

(a)

Figure 7
(a) (-)-Menthone thiosemicarbazone (Oliveira et al., 2014) and (b) tetralone thiosemicarbazone (Oliveira et al., 2012) graphical representations of the mono-periodic hydrogen-bonded ribbons structures along [100] and [1 $\overline{1} 0]$, respectively. The molecules are connected by $\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions drawn as dashed lines. The atoms of the TSC entities and one $\mathrm{C}-\mathrm{H}$ donor in general positions are labelled. This packing pattern is common for non-substituted thiosemicarbazones attached to non-polar organic entities.

Table 3
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}$
$M_{\text {r }}$	237.36
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	123
$a, b, c(\AA)$	15.0159 (7), 8.0595 (3), 10.8243 (5)
β (${ }^{\circ}$)	94.372 (3)
$V\left(\AA^{3}\right)$	1306.15 (10)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.23
Crystal size (mm)	$0.17 \times 0.14 \times 0.05$
Data collection	
Diffractometer	Enraf-Nonius FR590 Kappa CCD
Absorption correction	Multi-scan (Blessing, 1995)
$T_{\text {min }}, T_{\text {max }}$	0.922, 0.998
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	24176, 3002, 2241
$R_{\text {int }}$	0.083
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.651
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.054, 0.143, 1.09
No. of reflections	3002
No. of parameters	212
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.59, -0.45

Computer programs: COLLECT (Nonius, 1998), HKL DENZO and SCALEPACK (Otwinowski \& Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL2018/3 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), CrystalExplorer (Wolff et al., 2012), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of $c i s$-jasmone thiosemicarbazone was adapted from previously reported procedures (Freund \& Schander, 1902; Oliveira et al., 2017; Orsoni et al., 2020). The mixture of ethanolic solutions of cisjasmone (8 mmol in 50 ml) and thiosemicarbazide (8 mmol in 50 ml), was catalysed with HCl and refluxed for 8 h . After cooling, the precipitated product was filtered off and washed with cold ethanol. Colourless single crystals suitable for X-ray diffraction were obtained from tetrahydrofuran solution by slow evaporation of the solvent at room temperature. The template effect of the crystallization solvent and the temperature can be suggested as factors for the formation of the new crystalline modification of the cis-jasmone thiosemicarbazone, since the α-crystalline modification was crystallized from ethanol solution at 273 K (Orsoni et al., 2020).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The molecule of title compound shows disorder over the chain of the cis-jasmone fragment, namely the $\mathrm{H} 8, \mathrm{C} 9$ and C 10 atoms (Fig. 1), which are A labelled for the atoms with the higher s.o.f. value and B labelled for the lower [site-occupancy ratio = 0.590 (14):0.410 (14)]. H atoms attached to the C2, C3, C6, C7,

C11, N2 and N3 atoms were located in the difference Fourier map. The one bonded to N 2 was refined freely, and those bonded to C2, C3, C6, C7, C11, and N3 were refined freely using the same isotropic displacement parameter for the atoms bonded to the same parent atom. The remaining hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command). Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Thus, for the $\mathrm{C}_{1} 0 \mathrm{HH}_{3}$ and ${\mathrm{C} 10 B \mathrm{H}_{3}}^{\text {frag- }}$ ments, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, the $\mathrm{C}-\mathrm{H}$ bond lengths were set to $0.96 \AA$. For the H atoms attached to the C 8 atom and to the $\mathrm{C} 9 A$ and $\mathrm{C} 9 B$ atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, the $\mathrm{C}-\mathrm{H}$ bond lengths were set to 0.93 and $0.97 \AA$, respectively.

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for the long-time support.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES), Finance code 001.

References

Acharya, P. T., Bhavsar, Z. A., Jethava, D. J., Patel, D. B. \& Patel, H. D. (2021). J. Mol. Struct. 1226, 129268.

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Bajaj, K., Buchanan, R. M. \& Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Domagk, G., Behnisch, R., Mietzsch, F. \& Schmidt, H. (1946). Naturwissenschaften, 33, 315.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Freund, M. \& Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 26022606.

Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
Jamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. \& Grzęda, E. (2022). Agronomy 12, 116.
Kanso, F., Khalil, A., Noureddine, H. \& El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Oliveira, A. B. de, Beck, J., Daniels, J., Farias, R. L. de \& Godoy Netto, A. V. (2014). Acta Cryst. E70, o903-o904.
Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de \& Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.

Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. \& Jess, I. (2012). Acta Cryst. E68, o2581.

Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska,

data reports

A., Mielniczuk, E., Restivo, F. M. \& Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Siqueira, L. R. P. de, de Moraes Gomes, P. A. T., de Lima Ferreira, L. P., de Melo Rêgo, M. J. B. \& Leite, A. C. L. (2019). Eur. J. Med. Chem. 170, 237-260.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.

full crystallographic data

IUCrData (2023). 8, x231018 [https://doi.org/10.1107/S2414314623010180]
A second crystalline modification of 2-\{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo-pent-2-en-1-ylidene\}hydrazinecarbothioamide

Adriano Bof de Oliveira, Leandro Bresolin, Vanessa Carratu Gervini, Johannes Beck and Jörg Daniels

2-\{3-Methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene\}hydrazinecarbothioamide

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}$
$M_{r}=237.36$
Monoclinic, $P 2_{1} / c$
$a=15.0159$ (7) \AA
$b=8.0595$ (3) \AA
$c=10.8243(5) \AA$
$\beta=94.372(3)^{\circ}$
$V=1306.15(10) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius FR590 Kappa CCD diffractometer
Radiation source: sealed X-ray tube, Enraf Nonius FR590
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
CCD rotation images, thick slices, κ-goniostat scans
$F(000)=512$
$D_{\mathrm{x}}=1.207 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 60208 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Plate, colourless
$0.17 \times 0.14 \times 0.05 \mathrm{~mm}$

Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.922, T_{\text {max }}=0.998$
24176 measured reflections
3002 independent reflections
2241 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.083$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-19 \rightarrow 19$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.143$
$S=1.09$
3002 reflections
212 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.069 P)^{2}+0.7307 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	0.49279 (4)	-0.38063 (6)	0.29692 (5)	0.02576 (19)	
N1	0.35988 (12)	-0.5052 (2)	-0.01509 (16)	0.0239 (4)	
N2	0.40985 (12)	-0.5194 (2)	0.09773 (17)	0.0235 (4)	
H1	0.4271 (17)	-0.617 (3)	0.133 (2)	0.030 (7)*	
N3	0.42480 (14)	-0.2376 (2)	0.09074 (19)	0.0275 (5)	
H2	0.3988 (18)	-0.242 (4)	0.016 (3)	0.039 (5)*	
H3	0.4455 (19)	-0.149 (4)	0.126 (3)	0.039 (5)*	
C1	0.32864 (14)	-0.6392 (3)	-0.0662 (2)	0.0224 (5)	
C2	0.33976 (16)	-0.8181 (3)	-0.0266 (2)	0.0251 (5)	
H2A	0.3276 (15)	-0.833 (3)	0.065 (2)	0.024 (4)*	
H2B	0.4031 (17)	-0.853 (3)	-0.036 (2)	0.024 (4)*	
C3	0.27458 (17)	-0.9129 (3)	-0.1170 (2)	0.0295 (5)	
H3A	0.3041 (16)	-1.002 (4)	-0.156 (2)	0.035 (5)*	
H3B	0.2234 (17)	-0.961 (3)	-0.074 (2)	0.035 (5)*	
C4	0.24066 (15)	-0.7858 (3)	-0.2109 (2)	0.0269 (5)	
C5	0.27121 (15)	-0.6322 (3)	-0.1810 (2)	0.0253 (5)	
C6	0.25021 (17)	-0.4704 (3)	-0.2465 (2)	0.0299 (5)	
H6A	0.3013 (19)	-0.413 (4)	-0.246 (3)	0.039 (5)*	
H6B	0.2284 (17)	-0.490 (3)	-0.337 (3)	0.039 (5)*	
C7	0.18173 (18)	-0.3701 (3)	-0.1851 (2)	0.0349 (6)	
H7	0.1977 (18)	-0.347 (3)	-0.097 (3)	0.041 (8)*	
C8	0.1055 (2)	-0.3144 (4)	-0.2354 (3)	0.0520 (8)	
H8A	0.077777	-0.233393	-0.190673	0.062*	0.590 (14)
H8B	0.059808	-0.292155	-0.184493	0.062*	0.410 (14)
C9A	0.0569 (4)	-0.3651 (9)	-0.3570 (6)	0.0381 (17)	0.590 (14)
H9A1	0.014033	-0.451696	-0.342863	0.046*	0.590 (14)
H9A2	0.099214	-0.408217	-0.412357	0.046*	0.590 (14)
C10A	0.0088 (6)	-0.2146 (8)	-0.4159 (9)	0.0420 (18)	0.590 (14)
H10A	-0.034413	-0.174691	-0.362002	0.063*	0.590 (14)
H10B	-0.020921	-0.245795	-0.494084	0.063*	0.590 (14)
H10C	0.051400	-0.128624	-0.428493	0.063*	0.590 (14)
C11	0.17972 (19)	-0.8356 (4)	-0.3194 (3)	0.0371 (6)	
H11A	0.161 (2)	-0.743 (4)	-0.376 (3)	0.051 (5)*	
H11B	0.125 (2)	-0.877 (4)	-0.291 (3)	0.051 (5)*	
H11C	0.206 (2)	-0.916 (4)	-0.370 (3)	0.051 (5)*	
C12	0.43977 (14)	-0.3783 (2)	0.1527 (2)	0.0221 (4)	
C9B	0.0882 (7)	-0.2831 (15)	-0.3810 (7)	0.043 (3)	0.410 (14)
H9B1	0.108084	-0.172234	-0.400126	0.052*	0.410 (14)
H9B2	0.120614	-0.362544	-0.427766	0.052*	0.410 (14)

C10B	$-0.0104(10)$	$-0.290(3)$	$-0.4108(15)$	$0.090(6)$	$0.410(14)$
H10D	-0.034871	-0.381309	-0.367063	0.135^{*}	$0.410(14)$
H10E	-0.022841	-0.306245	-0.498360	0.135^{*}	$0.410(14)$
H10F	-0.037061	-0.188515	-0.386266	0.135^{*}	$0.410(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0399(4)$	$0.0149(3)$	$0.0215(3)$	$-0.0017(2)$	$-0.0048(2)$	$-0.0004(2)$
N1	$0.0299(10)$	$0.0203(9)$	$0.0208(9)$	$-0.0005(8)$	$-0.0020(7)$	$0.0003(7)$
N2	$0.0330(10)$	$0.0148(9)$	$0.0215(9)$	$-0.0010(7)$	$-0.0045(8)$	$-0.0010(7)$
N3	$0.0414(12)$	$0.0160(9)$	$0.0241(11)$	$-0.0025(8)$	$-0.0047(9)$	$-0.0005(8)$
C1	$0.0252(11)$	$0.0207(11)$	$0.0215(11)$	$-0.0015(8)$	$0.0023(8)$	$-0.0016(9)$
C2	$0.0298(12)$	$0.0174(10)$	$0.0275(12)$	$-0.0013(9)$	$-0.0023(9)$	$-0.0026(9)$
C3	$0.0343(13)$	$0.0249(12)$	$0.0289(12)$	$-0.0053(10)$	$-0.0004(10)$	$-0.0040(10)$
C4	$0.0252(11)$	$0.0303(12)$	$0.0250(11)$	$-0.0026(9)$	$0.0014(9)$	$-0.0039(10)$
C5	$0.0265(11)$	$0.0266(11)$	$0.0226(11)$	$0.0005(9)$	$0.0009(9)$	$-0.0002(9)$
C6	$0.0339(13)$	$0.0299(12)$	$0.0253(12)$	$0.0003(10)$	$-0.0026(10)$	$0.0028(10)$
C7	$0.0506(16)$	$0.0272(13)$	$0.0261(13)$	$0.0051(11)$	$-0.0020(11)$	$-0.0040(10)$
C8	$0.0579(19)$	$0.0569(18)$	$0.0405(16)$	$0.0247(15)$	$-0.0007(14)$	$-0.0123(15)$
C9A	$0.032(3)$	$0.033(3)$	$0.048(3)$	$0.003(2)$	$-0.003(2)$	$-0.004(3)$
C10A	$0.041(4)$	$0.038(3)$	$0.046(4)$	$0.006(2)$	$-0.007(3)$	$0.003(3)$
C11	$0.0353(15)$	$0.0436(15)$	$0.0316(14)$	$-0.0105(12)$	$-0.0024(11)$	$-0.0053(12)$
C12	$0.0258(11)$	$0.0156(10)$	$0.0249(11)$	$0.0009(8)$	$0.0019(9)$	$-0.0006(9)$
C9B	$0.047(5)$	$0.046(5)$	$0.037(4)$	$0.004(4)$	$0.003(3)$	$0.005(3)$
C10B	$0.047(7)$	$0.173(19)$	$0.050(6)$	$0.012(10)$	$0.001(5)$	$0.021(11)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 12$	$1.698(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.308(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.285(3)$	$\mathrm{C} 7-\mathrm{H} 7$	$0.98(3)$
$\mathrm{N} 1 — \mathrm{~N} 2$	$1.388(2)$	$\mathrm{C} 8-\mathrm{C} 9 \mathrm{~A}$	$1.512(6)$
$\mathrm{N} 2-\mathrm{C} 12$	$1.345(3)$	$\mathrm{C} 8-\mathrm{C} 9 \mathrm{~B}$	$1.598(8)$
$\mathrm{N} 2-\mathrm{H} 1$	$0.90(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9300
$\mathrm{~N} 3-\mathrm{C} 12$	$1.328(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9300
$\mathrm{~N} 3-\mathrm{H} 2$	$0.87(3)$	$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$1.526(10)$
$\mathrm{N} 3-\mathrm{H} 3$	$0.85(3)$	$\mathrm{C} 9 \mathrm{~A}-\mathrm{H} 9 \mathrm{~A} 1$	0.9700
$\mathrm{C} 1-\mathrm{C} 5$	$1.458(3)$	$\mathrm{C} 9 \mathrm{~A}-\mathrm{H} 9 \mathrm{~A} 2$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.510(3)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{H} 10 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 3$	$1.534(3)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$1.03(2)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{H} 10 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	$1.00(2)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	$1.00(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.504(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	$0.96(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$0.96(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	$0.95(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	$1.00(3)$	$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	$1.49(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.351(3)$	$\mathrm{C} 9 \mathrm{~B}-\mathrm{H} 9 \mathrm{~B} 1$	0.9700
$\mathrm{C} 4-\mathrm{C} 11$	$1.489(3)$	$\mathrm{C} 9 \mathrm{~B}-\mathrm{H} 9 \mathrm{~B} 2$	0.9700
$\mathrm{C} 5-\mathrm{C} 6$	$1.506(3)$	$\mathrm{C} 10 \mathrm{~B}-\mathrm{H} 10 \mathrm{D}$	0.9600

C6-C7	1.502 (4)
C6-H6A	0.90 (3)
C6-H6B	1.02 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	117.67 (18)
$\mathrm{C} 12-\mathrm{N} 2-\mathrm{N} 1$	117.32 (18)
C12-N2-H1	118.2 (16)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 1$	124.3 (16)
C12-N3-H2	118.8 (19)
C12-N3-H3	116.3 (19)
H2-N3-H3	125 (3)
N1-C1-C5	120.47 (19)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	130.6 (2)
C5-C1-C2	108.90 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	104.07 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.4 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	113.8 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.9 (13)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.0 (13)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	105.00 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.8 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	111.1 (15)
C4-C3-H3B	110.1 (15)
C2-C3-H3B	111.7 (14)
H3A-C3-H3B	108 (2)
C5-C4-C11	127.8 (2)
C5-C4-C3	111.8 (2)
C11-C4-C3	120.4 (2)
C4-C5-C1	109.67 (19)
C4-C5-C6	128.7 (2)
C1-C5-C6	121.56 (19)
C7-C6-C5	112.6 (2)
C7-C6-H6A	109.3 (18)
C5-C6-H6A	107.2 (18)
C7-C6-H6B	109.0 (15)
C5-C6-H6B	111.1 (16)
H6A-C6-H6B	108 (2)
C8-C7-C6	127.4 (2)
C8-C7-H7	118.7 (16)
C6-C7-H7	113.9 (16)
C7-C8-C9A	128.2 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12$	-177.82 (19)
N2-N1-C1-C5	176.34 (19)
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-2.8(4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	171.8 (2)
C5-C1-C2-C3	-7.4 (2)

C10B-H10E	0.9600
C10B-H10F	0.9600
C7-C8-C9B	122.4 (4)
C7-C8-H8A	115.9
C9A-C8-H8A	115.9
C7-C8- H 8 B	118.8
C9B-C8-H8B	118.8
C8-C9A-C10A	109.3 (5)
C8-C9A-H9A1	109.8
C10A-C9A-H9A1	109.8
C8-C9A-H9A2	109.8
C10A-C9A-H9A2	109.8
H9A1-C9A-H9A2	108.3
C9A-C10A-H10A	109.5
C9A-C10A-H10B	109.5
H10A-C10A-H10B	109.5
C9A-C10A-H10C	109.5
H10A-C10A-H10C	109.5
H10B-C10A-H10C	109.5
C4-C11-H11A	114.3 (18)
$\mathrm{C} 4-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.3 (18)
H11A-C11-H11B	104 (2)
C4- $\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	112.3 (18)
H11A-C11-H11C	105 (3)
H11B-C11-H11C	111 (3)
N3-C12-N2	117.47 (19)
N3-C12-S1	121.54 (17)
N2-C12-S1	120.98 (16)
C10B-C9B-C8	107.0 (10)
C10B-C9B-H9B1	107.9
C8-C9B-H9B1	109.0
C10B-C9B-H9B2	113.0
C8-C9B-H9B2	111.1
H9B1-C9B-H9B2	108.7
C9B-C10B-H10D	109.5
C9B-C10B-H10E	109.5
H10D-C10B-H10E	109.5
C9B-C10B-H10F	109.5
H10D-C10B-H10F	109.5
H10E-C10B-H10F	109.5
C2-C1-C5-C4	4.5 (3)
N1-C1-C5-C6	3.0 (3)
C2-C1-C5-C6	-177.7 (2)
C4-C5-C6-C7	100.2 (3)
C1-C5-C6-C7	-77.0 (3)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$7.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-5.1(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	$175.9(2)$
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$179.4(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$0.5(3)$
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.9(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-177.1(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$-174.7(2)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-123.5(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9 \mathrm{~A}$	$14.5(7)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9 \mathrm{~B}$	$-24.3(7)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$-145.8(5)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12-\mathrm{N} 3$	$-4.8(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12-\mathrm{S} 1$	$174.04(15)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	$156.7(12)$

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.90(3)$	$2.53(3)$	$3.4142(19)$	$166(2)$
$\mathrm{N} 3 — \mathrm{H} 3 \cdots \mathrm{~S}^{\mathrm{ii}}$	$0.85(3)$	$2.48(3)$	$3.325(2)$	$173(3)$
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{~S}^{\mathrm{i}}$	$1.00(2)$	$2.93(2)$	$3.436(2)$	$112.2(16)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1, y+1 / 2,-z+1 / 2$.

