ISSN 2414-3146

Received 3 January 2024
Accepted 4 January 2024

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: thiosemicarbazone; cis-jasmone; methylthiosemicarbazone derivative;
centrosymmetric dimers; crystal structure; Hirshfeld analysis.

CCDC reference: 2304272

Structural data: full structural data are available from iucrdata.iucr.org

N-Methyl-2-\{3-methyl-2-[(2Z)-pent-2-en-1-yl]-cyclopent-2-en-1-ylidene\}hydrazinecarbothioamide

Adriano Bof de Oliveira, ${ }^{\text {a* }}$ Leandro Bresolin, ${ }^{\text {b }}$ Johannes Beck ${ }^{\text {c }}$ and Jörg Daniels ${ }^{\text {c }}$

${ }^{\text {a }}$ Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s / n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil, ${ }^{\text {b }}$ Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, and ${ }^{\text {c Institut für Anorganische Chemie, Rheinische Friedrich- }}$ Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany. *Correspondence e-mail: adriano@daad-alumni.de

The equimolar and hydrochloric acid-catalysed reaction between cis-jasmone and 4-methylthiosemicarbazide in ethanolic solution yields the title compound, $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S}$ (common name: cis-jasmone 4-methylthiosemicarbazone). Two molecules with all atoms in general positions are present in the asymmetric unit. In one of them, the carbon chain is disordered [site occupancy ratio $=$ 0.821 (3):0.179 (3)]. The thiosemicarbazone entities $[\mathrm{N}-\mathrm{N}-\mathrm{C}(=\mathrm{S})-\mathrm{N}]$ are approximately planar, with the maximum deviation from the mean plane through the selected atoms being $-0.0115(16) \AA($ r.m.s.d. $=0.0078 \AA)$ for the non-disordered molecule and $0.0052(14) \AA$ (r.m.s.d. $=0.0031 \AA$) for the disordered one. The molecules are not planar, since the jasmone groups have a chain with $s p^{3}$-hybridized carbon atoms and, in addition, the thiosemicarbazone fragments are attached to the respective carbon five-membered rings and the dihedral angles between them for each molecule amount to 8.9 (1) and $6.3(1)^{\circ}$. In the crystal, the molecules are connected through pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions into crystallographically independent centrosymmetric dimers, in which rings of graph-set motifs $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$ are observed. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from $\mathrm{H} \cdots \mathrm{H}(70.6 \%), \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}(16.7 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(7.5 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(4.9 \%)$ interactions [considering the two crystallographically independent molecules and only the disordered atoms with the highest s.o.f. for the evaluation].

Chemical scheme

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for the two crystallographically independent cis-jasmone 4-methylthiosemicarbazone molecules, JMTSC-1 and JMTSC-2.

Compound	Atom chain	Torsion angle	Atom chain	Torsion angle
JMTSC-1	N1/N2/C11/N3	-1.2 (3)	C5/C6/C7/C8	114.6 (3)
JMTSC-1	N1/N2/C11/S1	178.55 (17)	C7/C8/C9/C10	128.0 (4)
JMTSC-2	N4/N5/C25/N6	0.8 (3)	C18/C19/C20A/C21A	139.9 (4)
JMTSC-2	N4/N5/C25/S2	-179.57 (16)	C18/C19/C20B/C21B	-117.6 (13)
			C20A/C21A/C22A/C23A	121.9 (4)
			C20B/C21B/C22B/C23B	-95 (4)
	Fragment	Max. deviation ${ }^{a}$	r.m.s.d.	Angle ${ }^{\text {b }}$
JMTSC-1	N1/N2/C11/S1/N3	-0.0115 (16) [N 2]	0.0078	
JMTSC-1	C1-C5 ring	0.0130 (16) [C4]	0.0089	8.9 (1)
JMTSC-2	N4/N5/C25/S2/N6	0.0052 (14) [N 5$]$	0.0031	
JMTSC-2	C14-C18 ring	0.0078 (16) [C17]	0.0054	6.3 (1)
	Bond lengths ${ }^{\text {c }}$	$\mathrm{N}-\mathrm{N}$	$\mathrm{N}-\mathrm{C}$	C=S
JMTSC-1		1.392 (3)	1.351 (3)	1.680 (2)
JMTSC-2		1.394 (2)	1.357 (3)	1.678 (2)

Notes: (a) The maximum deviation from the mean plane through the selected atoms; (b) angle to previous plane; (c) bond lengths for the N1/N2/C11/S1 and N4/N5/C25/S2 entities.

Structure description

To the best of our knowledge, the first crystal structure of cisjasmone thiosemicarbazone was reported recently and it was pointed out that this derivative based on non-substituted cisjasmone shows antifungal activity (Orsoni et al., 2020; Jamiołkowska et al., 2022).

As part of our interest in thiosemicarbazones attached to natural product derivatives and on the influence of the substituent groups at the terminal N atom on the supramolecular arrangement, we report here the synthesis, crystal structure and Hirshfeld analysis of cis-jasmone 4-methylthio-

Figure 1
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level for the two crystallographically independent molecules. Disordered atoms are drawn with 40% transparency and labelled $\mathrm{C} 20 A, \mathrm{C} 21 A, \mathrm{C} 22 A$, $\mathrm{C} 23 A, \mathrm{H} 19 A$ and $\mathrm{H} 19 B$ [s.o.f. $=0.821$ (3)] and $\mathrm{C} 20 B, \mathrm{C} 21 B, \mathrm{C} 22 B, \mathrm{C} 23 B$, $\mathrm{H} 19 C$ and $\mathrm{H} 19 D$ [s.o.f. $=0.179$ (3)]. The remaining H atoms were omitted for clarity.
semicarbazone. It is important to highlight that the substituents at the terminal N atom are relevant not only to the crystal packing, but also to the biological properties of the thiosemicarbazone derivatives. For example, a small chemical library of 4-methylthiosemicarbazones has been studied for the treatment of Parkinson's disease (Mathew et al., 2021) and for microbial growth inhibition (D'Agostino et al., 2022). In addition, for a review article on coordination compounds with 4-methylthiosemicarbazone derivatives including biological applications and catalytic activity, see: Monsur Showkot Hossain et al. (2023).

Figure 2
Crystal structure section of the title compound for the JMTSC- $\mathbf{1}$ molecule, showing the hydrogen-bond intermolecular interactions as dashed lines. The molecules are linked into centrosymmetric dimers via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions with graph-set motifs $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$. [Symmetry code: (i) $-x,-y,-z+2$.]

The asymmetric unit of the title compound comprises two molecules with all atoms in general positions, with one of them showing disorder over the carbon chain [site occupancy ratio $=$ 0.821 (3):0.179 (3)]. The molecules are not planar due to the chain with $s p^{3}$-hybridized carbon atoms in the jasmone fragment and the dihedral angles between the thiosemicarbazone fragment and the respective carbon five-membered ring, which amount to $8.9(1)^{\circ}$ for the non-disordered molecule and $6.3(1)^{\circ}$ for the disordered one (Fig. 1). To simplify the structure description, the non-disordered molecule, with atoms $\mathrm{C} 1-\mathrm{C} 13 / \mathrm{N}-\mathrm{N} 3 / \mathrm{S} 1$, will be designated as JMTSC-1, while the disordered one, with the atoms C14-C23A/C23B/ N4-N6/S2, will be designated as JMTSC-2. To get a stable refinement, the C20, C21, C22 and C23 atoms were split into two positions and A-labelled for the higher s.o.f and B-labelled for the lower. Atom C19, which is itself not disordered, is bound to $\mathrm{C} 20 A$ and $\mathrm{C} 20 B$, and to achieve the best orientations for the $\mathrm{C} 19-\mathrm{H}$ bonds, the $\mathrm{H} 19 A$ and $\mathrm{H} 19 B$ atoms were also split, into two positions. Thus, the $\mathrm{H} 19 A$ and $\mathrm{H} 19 B$ atoms have a s.o.f. of 0.821 (3) and the $\mathrm{H} 19 C$ and $\mathrm{H} 19 D$ atoms have a s.o.f. of 0.179 (3). Selected geometric parameters for the structural description of JMTSC- $\mathbf{1}$ and JMTSC-2 are given in Table 1; these are in agreement with literature data (Oliveira et al., 2016; Rocha et al., 2014).

Figure 3
Crystal structure section of the title compound for the JMTSC-2 molecule, showing the hydrogen-bonded intermolecular interactions drawn as dashed lines. Disorder is not shown for clarity. The molecules are linked into centrosymmetric dimers via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions with graph-set motifs $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$. [Symmetry code: (ii) $-x+1,-y,-z+1$.]

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.81(3)$	$2.80(3)$	$3.591(2)$	$167(2)$
$\mathrm{C} 2-\mathrm{H} 5 B \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.97(3)$	$2.90(3)$	$3.457(2)$	$117.4(18)$
$\mathrm{N} 5-\mathrm{H} 3 \cdots \mathrm{~S} 2^{\mathrm{ii}}$	$0.84(3)$	$2.75(3)$	$3.585(2)$	$172(2)$
$\mathrm{C} 15-\mathrm{H} 18 A \cdots \mathrm{~S}^{\mathrm{ii}}$	$0.93(2)$	$2.98(2)$	$3.472(2)$	$115.0(17)$

Symmetry codes: (i) $-x,-y,-z+2$; (ii) $-x+1,-y,-z+1$.

For the supramolecular arrangement and Hirshfeld analysis, for clarity only the disordered atoms with the highest s.o.f. value were considered. In the crystal, the molecules are connected through pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions into centrosymmetric dimers with graph-set motifs $R_{2}^{2}(8)$ and $R_{2}^{1}(7)$ (Table 2).

With the coordinates that were used for the refinement, the crystallographically independent dimers of the JMTSC-1 molecules have the gravity centre located in the cell vertices (Fig. 2), and in the centre of the $a c$ planes for the JMTSC-2 molecules (Fig. 3). In addition, the molecules are stacked along [100] and only weak intermolecular interactions, e.g., London dispersion forces can be presumed in this direction (Fig. 4).

The Hirshfeld surface analysis (Hirshfeld, 1977), the graphical representations and the two-dimensional Hirshfeld surface fingerprints (HSFP) were evaluated with the Crystal Explorer software (Wolff et al., 2012). The Hirshfeld surface

Figure 4
Selected crystal section of the title compound viewed along [010] showing the JMTSC-1 and JMTSC-2 molecules stacked along [100]. Only the nonH atoms of the thiosemicarbazone entities are labelled and disorder is not shown for clarity. [Symmetry code: (iii) $x+1, y, z$.]

Figure 5
Hirshfeld surface graphical representation ($d_{\text {norm }}$) for the two crystallographically independent molecules of the title compound. The surface is drawn with transparency, and the disorder is not shown for clarity. The regions with strongest intermolecular interactions are shown in red ($d_{\text {norm }}$ range: -0.216 to 1.522 a.u.).
analysis of the title compound, considering the JMTSC-1 and the JMTSC-2 molecules, suggests that the most relevant intermolecular interactions for the crystal packing are $\mathrm{H} \cdots \mathrm{H}$ (70.6\%), H $\cdot \mathrm{S} / \mathrm{S} \cdots \mathrm{H}(16.7 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ (7.5\%) and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(4.9 \%)$. A graphical representation of the Hirshfeld surface ($d_{\text {norm }}$) is shown in Fig. 5 with the locations of the strongest intermolecular contacts, i.e, the regions around the atoms H1, H3, S1 and S2, indicated in red. These atoms are those involved in the $\mathrm{H} \cdots \mathrm{S}$ interactions showed in

Figure 6
The Hirshfeld surface two-dimensional fingerprint plot for the title compound, showing the contacts in detail (cyan dots). The major contributions of the interactions to the crystal cohesion amount to (a) $\mathrm{H} \cdots \mathrm{H}(70.6 \%),(b) \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}(16.7 \%)$, (c) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(7.5 \%)$ and (d) $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(4.9 \%)$. The $d_{\mathrm{i}}\left(x\right.$-axis) and the $d_{\mathrm{e}}(y$-axis) values are the closest internal and external distances from given points on the Hirshfeld surface contacts (in \AA). Regarding the disorder, only the atoms with the highest s.o.f. were considered.

Figure 7
(a) Dimeric structure of the benzylideneacetone 4-methylthiosemicarbazone compound (Rocha et al., 2014). The molecules are connected via pairs of centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set $R_{2}^{2}(8)$. [Symmetry code: (i) $-x+1,-y,-z$.] and (b) section of the molecular arrangement of the vanilline 4-methylthiosemicarbazone structure (Oliveira, Beck et al., 2015). The molecules are connected by pairs of centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set $R_{2}^{2}(8)$. The dimers are linked further by $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions into a tape-like structure. Only the subunit of the supramolecular arrangement is shown for clarity. [Symmetry codes: (i) $x+1, y-1, z ;$; (ii) $-x-2,-y,-z$; (iii) $-x-1, y+\frac{1}{2},-z-\frac{1}{2}$.]
the previous figures (Figs. 2 and 3). The contributions to the crystal cohesion are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots (Fig. 6).

The crystalline supramolecular arrangement of thiosemicarbazones depends on the template effect of the crystallization solvent, the presence of solvate molecules and on the crystallization methods. In addition, the steric effect of the substituents in the $R_{1} R_{2} \mathrm{~N}-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{S})-\mathrm{N} R_{3} R_{4}$ fragment is of prime importance for the crystal packing. In the title compound, two structural features lead to the building of dimers. The first one is the terminal methyl group, $\mathrm{N}(\mathrm{H}) \mathrm{CH}_{3}$, which decreases the possibility for $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions and enhances the formation of hydrogen-bonded supramolecular structures. On the other side of the molecule, the second feature is the cis-jasmone entity, which, through steric hindrance, precludes intermolecular interactions, e.g., $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ or $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (Figs. 2 and 3); thus, four methylsubstituted thiosemicarbazone derivatives were selected for structural comparison with the title compound.

The first example is the crystal structure of benzylideneacetone 4-methylthiosemicarbazone (Rocha et al., 2014). As a result of the steric effect of two methyl groups, one on the terminal N atom and other on the C atom attached to the thiosemicarbazone entity, dimer formation was favoured. The

Figure 8
(a) Section of the molecular arrangement of the $3^{\prime}, 4^{\prime}$-(methylenedioxy) acetophenone 4-methylthiosemicarbazone structure (Oliveira, Näther et al., 2015). The molecules are connected by pairs of centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set $R_{2}^{2}(8)$, and further linked by additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions into a tape-like structure. H atoms were omitted for clarity and only the subunit of the supramolecular arrangement is shown [Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x,-y+\frac{3}{2}$, $z-\frac{1}{2}$.] and (b) section of the molecular arrangement of the $(-)$-menthone 4-methylthiosemicarbazone structure (Oliveira et al., 2016). The molecules are connected by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set $R_{2}^{2}(8)$, into non-centrosymmetric dimers and further linked by additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, forming a tape-like structure. Only the subunit of the supramolecular arrangement is shown for clarity [Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+1$; (ii) $-x+2, y+\frac{1}{2},-z+1$.]
remaining $\mathrm{N}-\mathrm{H}$ bond is involved in the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular interaction, with graph-set motif $S(5)$. Thus, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set motif $R_{2}^{2}(8)$, into centrosymmetric dimers. For the graphical representation of the dimeric unit, see Fig. 7(a).

The second selected molecule is the vanilline 4-methylthiosemicarbazone derivative (Oliveira, Beck et al., 2015) in which the thiosemicarbazone entities are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set motif $R_{2}^{2}(8)$, into centrosymmetric dimers. The dimers are further linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ interactions and can be considered subunits of a hydrogen-bonded tape-like supramolecular arrangement. This is only possible because of the O atoms in the vanilline structure, see Fig. 7(b).

A further example is $3^{\prime}, 4^{\prime}$-(methylenedioxy)acetophenone 4-methylthiosemicarbazone (Oliveira, Näther et al., 2015). As mentioned above, the terminal methyl group decreases the dimensionality of the molecular arrangement and the thiosemicarbazone entities are connected by pairs of centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, with graph-set motifs $R_{2}^{2}(8)$. A feature of the structural arrangement of this compound is that every thiosemicarbazone fragment bridges two other mol-
ecules through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions in opposite directions, see Fig. 8(a).

Finally, the structure of (-)-menthone 4-methylthiosemicarbazone (Oliveira et al., 2016) shows a non-centrosymmetric dimer, with the molecules connected by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, also with graph-set motif $R_{2}^{2}(8)$. A difference in this structure is the linking of the terminal $\mathrm{N}-\mathrm{H}$ bonds between the molecules through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions into a tape-like structure. For the dimeric subunit of the supramolecular arrangement, see Fig. 8(b).

As observed for the title compound, pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular interactions with graph-set motif $R_{2}^{2}(8)$ are a remarkable feature for the crystal structure of thiosemicarbazone derivatives. The supramolecular arrangement of the compounds depends on the structure of the substituents on the terminal N atom, as well as on the fragment attached to the first N atom.

Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the cisjasmone 4-methylthiosemicarbazone derivative was adapted from previously reported procedures (Oliveira, Beck et al., 2015; Orsoni et al., 2020). A mixture of ethanolic solutions of cis-jasmone (8 mmol in 50 ml) and 4-methylthiosemicarbazide (8 mmol in 50 ml) was catalysed with HCl and refluxed for 8 h . After cooling, the precipitated product was filtered off and washed with cold ethanol. Colourless single crystals suitable for X-ray diffraction were obtained from tetrahydrofuran by slow evaporation of the solvent at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. There are two crystallographically independent molecules in the asymmetric unit of the title compound and one of them, JMTSC-2, shows disorder over the chain of the cis-jasmone fragment, namely the C20, C21, C22, C23, H19C and H19D atoms (Fig. 1). These atoms were split over two positions, with the carbon atoms being A labelled for the higher s.o.f. value positions and B-labelled for the lower [site-occupancy ratio $=0.821$ (3):0.179 (3)]. The atom C 19 is itself not disordered, but it is bound to C 20 A and $\mathrm{C} 20 B$, and to get the best orientations for the $\mathrm{C} 19-\mathrm{H}$ bonds, the hydrogen atoms were disordered. Thus, H19A and H19B have the positions with higher s.o.f., while H19C and H19D have the positions with the lower. The EADP command was used to constrain the displacement parameters of the disordered carbon atoms.

The H atoms were treated by a mixture of constrained and independent refinement. The constrained H atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined using a riding model. For the ${\mathrm{C} 13 \mathrm{H}_{3}}^{2}, \mathrm{C} 23 A \mathrm{H}_{3}, \mathrm{C} 23 B \mathrm{H}_{3}$ and ${\mathrm{C} 26 \mathrm{H}_{3}}^{2}$ groups, the methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, and
the $\mathrm{C}-\mathrm{H}$ bonds were set to $0.96 \AA$. In an analogous manner, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, for the $\mathrm{C} 22 A \mathrm{H}_{2}$ and $\mathrm{C} 22 B \mathrm{H}_{2}$ groups the $\mathrm{C}-\mathrm{H}$ bond lengths were set to $0.97 \AA$ and for the $\mathrm{C} 20 A \mathrm{H}, \mathrm{C} 20 B \mathrm{H}, \mathrm{C} 21 A \mathrm{H}$ and $\mathrm{C} 21 B \mathrm{H}$, were set to $0.93 \AA$. In addition, the $\mathrm{C} 19-\mathrm{H}$ bonds were set to $0.97 \AA$. The remaining H atoms were refined freely.

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for the long-time support.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

References

Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, p. 271. Copenhagen: Munksgaard.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
D'Agostino, I., Mathew, G. E., Angelini, P., Venanzoni, R., Angeles Flores, G., Angeli, A., Carradori, S., Marinacci, B., Menghini, L., Abdelgawad, M. A., Ghoneim, M. M., Mathew, B. \& Supuran, C. T. (2022). J. Enzyme Inhib. Med. Chem. 37, 986-993.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
Jamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. \& Grzęda, E. (2022). Agronomy 12, 116.
Mathew, G. E., Oh, J. M., Mohan, K., Tengli, A., Mathew, B. \& Kim, H. (2021). J. Biomol. Struct. Dyn. 39, 4786-4794.

Monsur Showkot Hossain, A., Méndez-Arriaga, J. M., Gómez-Ruiz, S., Xie, J., Gregory, D. H., Akitsu, T., Ibragimov, A. B., Sun, B. \& Xia, C. (2023). Polyhedron, 244, 116576.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Oliveira, A. B. de, Beck, J., Daniels, J. \& Farias, R. L. (2016). IUCrData, 1, x160459.
Oliveira, A. B. de, Beck, J., Daniels, J. \& Feitosa, B. R. S. (2015). X-ray Struct. Anal. Online, 31, 5-6.

Table 3
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S}$
251.39

Triclinic, $P \overline{1}$
Temperature (K)
223
7.9583 (2), 11.2703 (2), 16.0080 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
83.0428 (18), 86.9392 (13),
76.5236 (18)
1385.51 (6)

4
Mo $K \alpha$
0.22
$0.28 \times 0.13 \times 0.12$
$\begin{array}{ll}(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right) & 0.056 \\ \end{array}$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$0.052,0.140,1.03$
6319
432
H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right) \quad 0.29,-0.24$

Computer programs: COLLECT (Nonius, 1998), HKL DENZO and SCALEPACK (Otwinowski \& Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL2018/3 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), Crystal Explorer 3.1 (Wolff et al., 2012), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Oliveira, A. B. de, Näther, C., Jess, I., Farias, R. L. de \& Ribeiro, I. A. (2015). Acta Cryst. E71, o35-o36.

Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. \& Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rocha, F. V., Godoy Netto, A. V. de, Beck, J., Daniels, J. \& Oliveira, A. B. de (2014). Acta Cryst. E70, o800.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia.

full crystallographic data

IUCrData (2024). 9, x240013 [https://doi.org/10.1107/S2414314624000130]
N-Methyl-2-\{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene\}hydrazinecarbothioamide

Adriano Bof de Oliveira, Leandro Bresolin, Johannes Beck and Jörg Daniels

N-Methyl-2-\{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene\}hydrazinecarbothioamide

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S} \\
& M_{r}=251.39 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.9583(2) \AA \\
& b=11.2703(2) \AA \\
& c=16.0080(5) \AA \\
& \alpha=83.0428(18)^{\circ} \\
& \beta=86.9392(13)^{\circ} \\
& \gamma=76.5236(18)^{\circ} \\
& V=1385.51(6) \AA^{\circ}
\end{aligned}
$$

Data collection

Enraf-Nonius FR590 Kappa CCD diffractometer
Radiation source: sealed X-ray tube, Enraf Nonius FR590
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
CCD rotation images, thick slices, κ-goniostat scans

Refinement

```
Refinement on \(F^{2}\)
Least-squares matrix: full
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052\)
\(w R\left(F^{2}\right)=0.140\)
\(S=1.03\)
6319 reflections
432 parameters
0 restraints
Primary atom site location: structure-invariant
    direct methods
```

Absorption correction: analytical
(Alcock, 1970)
$T_{\text {min }}=0.945, T_{\text {max }}=0.978$
23118 measured reflections
6319 independent reflections
3700 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-20 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0556 P)^{2}+0.4261 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
C1	0.0353 (3)	0.1677 (2)	0.75329 (13)	0.0349 (5)	
C2	0.0002 (4)	0.0424 (2)	0.75249 (14)	0.0389 (5)	
C3	0.0007 (4)	0.0248 (2)	0.65901 (15)	0.0417 (6)	
C4	0.0398 (3)	0.1401 (2)	0.61351 (13)	0.0376 (5)	
C5	0.0551 (3)	0.2205 (2)	0.66637 (13)	0.0364 (5)	
C6	0.0898 (4)	0.3467 (2)	0.64395 (17)	0.0442 (6)	
C7	-0.0620 (4)	0.4410 (2)	0.60830 (17)	0.0486 (6)	
H7	-0.090 (3)	0.427 (3)	0.5551 (18)	0.067 (9)*	
C8	-0.1493 (4)	0.5392 (3)	0.6422 (2)	0.0583 (7)	
H8	-0.243 (3)	0.593 (2)	0.6108 (16)	0.055 (7)*	
C9	-0.1227 (6)	0.5789 (3)	0.7249 (2)	0.0773 (10)	
H9A	-0.009 (5)	0.516 (4)	0.750 (2)	0.124 (14)*	
H9B	-0.226 (5)	0.571 (3)	0.762 (2)	0.110 (13)*	
C10	-0.1051 (5)	0.7098 (3)	0.7187 (2)	0.0664 (9)	
H10A	-0.003 (5)	0.725 (3)	0.684 (2)	0.090 (11)*	
H10B	-0.095 (5)	0.735 (3)	0.771 (2)	0.103 (13)*	
H10C	-0.203 (5)	0.764 (3)	0.692 (2)	0.102 (12)*	
C11	0.0650 (3)	0.2114 (2)	0.96479 (14)	0.0410 (6)	
C12	0.0594 (4)	0.1544 (3)	0.52013 (16)	0.0502 (7)	
C13	0.1722 (4)	0.3754 (3)	1.01676 (17)	0.0605 (8)	
H13A	0.078825	0.394161	1.057058	0.091*	
H13B	0.202888	0.449897	0.992591	0.091*	
H13C	0.270256	0.321649	1.044276	0.091*	
H1	0.000 (3)	0.099 (3)	0.9014 (16)	0.055 (9)*	
H2	0.136 (4)	0.342 (3)	0.9011 (18)	0.062 (9)*	
H4A	-0.107 (3)	0.012 (2)	0.6423 (14)	0.043 (7)*	
H4B	0.087 (3)	-0.043 (2)	0.6446 (14)	0.041 (6)*	
H5A	-0.111 (4)	0.036 (2)	0.7836 (16)	0.062 (8)*	
H5B	0.083 (3)	-0.023 (2)	0.7831 (16)	0.055 (7)*	
H6A	0.132 (3)	0.375 (2)	0.6918 (14)	0.037 (6)*	
H6B	0.178 (4)	0.344 (2)	0.6043 (17)	0.058 (8)*	
H11A	-0.050 (4)	0.144 (3)	0.4942 (19)	0.078 (10)*	
H11B	0.151 (4)	0.097 (3)	0.5017 (18)	0.070 (9)*	
H11C	0.082 (4)	0.233 (3)	0.4981 (18)	0.078 (10)*	
N1	0.0527 (2)	0.22380 (17)	0.81644 (11)	0.0402 (5)	
N2	0.0324 (3)	0.1628 (2)	0.89595 (12)	0.0443 (5)	
N3	0.1185 (3)	0.3154 (2)	0.95063 (14)	0.0503 (6)	
S1	0.03760 (10)	0.14256 (6)	1.06201 (4)	0.0555 (2)	
C14	0.5379 (3)	0.16267 (19)	0.71740 (13)	0.0329 (5)	

C15	0.5078 (4)	0.0367 (2)	0.74221 (14)	0.0370 (5)	
C16	0.5116 (4)	0.0211 (2)	0.83872 (14)	0.0412 (6)	
C17	0.5457 (3)	0.1391 (2)	0.86107 (13)	0.0375 (5)	
C18	0.5580 (3)	0.21881 (19)	0.79294 (13)	0.0347 (5)	
C19	0.5811 (3)	0.3483 (2)	0.78856 (15)	0.0448 (6)	
H19A	0.643811	0.356753	0.837003	0.054*	0.821 (3)
H19B	0.647894	0.366698	0.738193	0.054*	0.821 (3)
H19C	0.685443	0.350346	0.754772	0.054*	0.179 (3)
H19D	0.486229	0.399219	0.755824	0.054*	0.179 (3)
C20A	0.4087 (5)	0.4364 (3)	0.7871 (2)	0.0532 (8)	0.821 (3)
H20A	0.329480	0.415962	0.754005	0.064*	0.821 (3)
C21A	0.3451 (5)	0.5388 (3)	0.8238 (2)	0.0569 (9)	0.821 (3)
H21A	0.229448	0.576497	0.815022	0.068*	0.821 (3)
C22A	0.4385 (6)	0.5964 (3)	0.8758 (2)	0.0621 (10)	0.821 (3)
H22A	0.557592	0.550356	0.879680	0.075*	0.821 (3)
H22B	0.387225	0.595899	0.932190	0.075*	0.821 (3)
C23A	0.4333 (6)	0.7287 (3)	0.8386 (3)	0.0612 (11)	0.821 (3)
H23A	0.474681	0.729616	0.781112	0.092*	0.821 (3)
H23B	0.505314	0.763050	0.870457	0.092*	0.821 (3)
H23C	0.316591	0.776477	0.840756	0.092*	0.821 (3)
C20B	0.592 (2)	0.4084 (12)	0.8561 (9)	0.0532 (8)	0.179 (3)
H20B	0.682753	0.377545	0.892534	0.064*	0.179 (3)
C21B	0.479 (2)	0.5069 (15)	0.8714 (11)	0.0569 (9)	0.179 (3)
H21B	0.516842	0.521502	0.922436	0.068*	0.179 (3)
C22B	0.319 (3)	0.6156 (17)	0.8557 (11)	0.0621 (10)	0.179 (3)
H22C	0.239982	0.592198	0.820463	0.075*	0.179 (3)
H22D	0.260444	0.632136	0.909131	0.075*	0.179 (3)
C23B	0.366 (3)	0.728 (2)	0.8152 (14)	0.0612 (11)	0.179 (3)
H23D	0.363076	0.783573	0.856476	0.092*	0.179 (3)
H23E	0.284292	0.766305	0.772294	0.092*	0.179 (3)
H23F	0.479632	0.707879	0.790243	0.092*	0.179 (3)
C24	0.5633 (5)	0.1554 (3)	0.95104 (15)	0.0526 (7)	
C25	0.5613 (3)	0.2125 (2)	0.49665 (13)	0.0354 (5)	
C26	0.6433 (4)	0.3925 (2)	0.41676 (15)	0.0529 (7)	
H26A	0.739134	0.344372	0.387775	0.079*	
H26B	0.673244	0.465559	0.430318	0.079*	
H26C	0.544756	0.414694	0.381308	0.079*	
H3	0.508 (3)	0.089 (3)	0.5819 (16)	0.052 (8)*	
H4	0.611 (3)	0.348 (2)	0.5401 (16)	0.048 (7)*	
H17A	0.599 (3)	-0.050 (2)	0.8611 (15)	0.053 (7)*	
H17B	0.401 (3)	0.004 (2)	0.8647 (15)	0.050 (7)*	
H18A	0.590 (3)	-0.023 (2)	0.7182 (14)	0.044 (7)*	
H18B	0.398 (3)	0.032 (2)	0.7211 (15)	0.048 (7)*	
H24A	0.573 (4)	0.238 (3)	0.960 (2)	0.095 (11)*	
H24B	0.459 (4)	0.138 (3)	0.9862 (18)	0.070 (9)*	
H24C	0.662 (4)	0.096 (3)	0.9751 (19)	0.078 (10)*	
N4	0.5513 (2)	0.22004 (16)	0.64328 (11)	0.0370 (4)	
N5	0.5353 (3)	0.15779 (19)	0.57504 (11)	0.0384 (5)	

N 6	$0.6022(3)$	$0.32130(18)$	$0.49376(13)$	$0.0453(5)$
S 2	$0.54338(9)$	$0.14458(6)$	$0.41094(3)$	$0.04489(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	0.0328 (13)	0.0353 (12)	0.0357 (12)	-0.0050 (10)	-0.0016 (9)	-0.0056 (9)
C2	0.0442 (15)	0.0375 (13)	0.0337 (12)	-0.0094 (11)	0.0011 (11)	-0.0002 (10)
C3	0.0490 (16)	0.0385 (14)	0.0375 (13)	-0.0090 (12)	0.0019 (11)	-0.0076 (10)
C4	0.0383 (13)	0.0390 (13)	0.0335 (12)	-0.0059 (10)	0.0031 (10)	-0.0035 (9)
C5	0.0373 (13)	0.0366 (13)	0.0340 (12)	-0.0063 (10)	-0.0003 (9)	-0.0028 (9)
C6	0.0495 (16)	0.0426 (14)	0.0425 (15)	-0.0161 (12)	-0.0001 (13)	-0.0023 (11)
C7	0.0600 (18)	0.0396 (15)	0.0477 (16)	-0.0185 (13)	-0.0049 (13)	0.0053 (11)
C8	0.0541 (18)	0.0418 (16)	0.075 (2)	-0.0109 (13)	-0.0013 (15)	0.0083 (14)
C9	0.111 (3)	0.0500 (19)	0.064 (2)	-0.0098 (19)	0.033 (2)	-0.0092 (15)
C10	0.078 (2)	0.0518 (19)	0.067 (2)	-0.0093 (17)	0.0050 (19)	-0.0087 (15)
C11	0.0462 (15)	0.0418 (14)	0.0355 (13)	-0.0086 (11)	-0.0052 (10)	-0.0072 (10)
C12	0.063 (2)	0.0497 (17)	0.0366 (14)	-0.0105 (15)	0.0044 (13)	-0.0067 (12)
C13	0.083 (2)	0.0542 (17)	0.0518 (16)	-0.0235 (15)	-0.0136 (14)	-0.0132 (13)
N1	0.0460 (12)	0.0425 (11)	0.0324 (10)	-0.0114 (9)	-0.0009 (8)	-0.0029 (8)
N2	0.0604 (14)	0.0447 (13)	0.0321 (11)	-0.0210 (11)	-0.0027 (9)	-0.0035 (9)
N3	0.0715 (16)	0.0471 (13)	0.0372 (13)	-0.0233 (11)	-0.0059 (11)	-0.0036 (10)
S1	0.0842 (5)	0.0544 (4)	0.0327 (3)	-0.0261 (4)	-0.0033 (3)	-0.0034 (3)
C14	0.0371 (13)	0.0325 (12)	0.0292 (11)	-0.0085 (10)	0.0009 (9)	-0.0039 (9)
C15	0.0450 (15)	0.0325 (13)	0.0335 (12)	-0.0087 (11)	0.0003 (11)	-0.0045 (9)
C16	0.0585 (17)	0.0331 (13)	0.0319 (12)	-0.0119 (12)	0.0020 (12)	-0.0014 (9)
C17	0.0463 (14)	0.0353 (12)	0.0307 (12)	-0.0085 (10)	0.0020 (10)	-0.0064 (9)
C18	0.0404 (13)	0.0338 (12)	0.0315 (11)	-0.0110 (10)	0.0006 (9)	-0.0057 (9)
C19	0.0614 (17)	0.0410 (14)	0.0381 (13)	-0.0233 (12)	-0.0009 (11)	-0.0059 (10)
C20A	0.071 (2)	0.0345 (16)	0.0559 (19)	-0.0156 (15)	-0.0056 (16)	-0.0041 (13)
C21A	0.054 (2)	0.0441 (19)	0.072 (2)	-0.0135 (16)	-0.0031 (16)	-0.0019 (16)
C22A	0.089 (3)	0.052 (2)	0.049 (2)	-0.024 (2)	-0.004 (2)	-0.0035 (15)
C23A	0.092 (4)	0.0384 (17)	0.057 (3)	-0.023 (2)	-0.008 (2)	-0.0053 (17)
C20B	0.071 (2)	0.0345 (16)	0.0559 (19)	-0.0156 (15)	-0.0056 (16)	-0.0041 (13)
C21B	0.054 (2)	0.0441 (19)	0.072 (2)	-0.0135 (16)	-0.0031 (16)	-0.0019 (16)
C22B	0.089 (3)	0.052 (2)	0.049 (2)	-0.024 (2)	-0.004 (2)	-0.0035 (15)
C23B	0.092 (4)	0.0384 (17)	0.057 (3)	-0.023 (2)	-0.008 (2)	-0.0053 (17)
C24	0.079 (2)	0.0511 (18)	0.0284 (13)	-0.0152 (16)	-0.0032 (14)	-0.0050 (11)
C25	0.0385 (13)	0.0341 (12)	0.0324 (12)	-0.0075 (10)	0.0000 (9)	-0.0013 (9)
C26	0.0690 (18)	0.0466 (15)	0.0443 (14)	-0.0222 (13)	0.0037 (13)	0.0056 (11)
N4	0.0457 (12)	0.0375 (11)	0.0302 (10)	-0.0129 (9)	-0.0012 (8)	-0.0067 (8)
N5	0.0550 (13)	0.0338 (11)	0.0287 (10)	-0.0147 (10)	0.0006 (8)	-0.0044 (8)
N6	0.0667 (15)	0.0414 (12)	0.0314 (11)	-0.0209 (10)	0.0021 (10)	-0.0027 (9)
S2	0.0637 (4)	0.0434 (4)	0.0286 (3)	-0.0142 (3)	-0.0008 (3)	-0.0043 (2)

Geometric parameters (A, ${ }^{\circ}$)

C1-N1	1.285 (3)	C16-H17A	0.98 (3)
C1-C5	1.461 (3)	C16-H17B	1.00 (3)
C1-C2	1.504 (3)	C17-C18	1.341 (3)
C2-C3	1.533 (3)	C17-C24	1.492 (3)
C2-H5A	1.00 (3)	C18-C19	1.506 (3)
C2-H5B	0.97 (3)	C19-C20B	1.359 (14)
C3-C4	1.500 (3)	C19-C20A	1.493 (4)
C3-H4A	0.96 (2)	C19-H19A	0.9700
C3-H4B	0.95 (2)	C19-H19B	0.9700
C4-C5	1.342 (3)	C19-H19C	0.9700
C4-C12	1.488 (3)	C19-H19D	0.9700
C5-C6	1.509 (3)	C20A-C21A	1.339 (5)
C6-C7	1.498 (4)	C20A-H20A	0.9300
C6-H6A	0.97 (2)	C21A-C22A	1.445 (5)
C6-H6B	0.92 (3)	C21A-H21A	0.9300
C7- C 8	1.323 (4)	C22A-C23A	1.530 (5)
C7-H7	0.93 (3)	C22A-H22A	0.9700
C8-C9	1.488 (5)	C22A-H22B	0.9700
C8-H8	0.96 (3)	C23A-H23A	0.9600
C9-C10	1.505 (5)	C23A-H23B	0.9600
C9-H9A	1.07 (4)	C23A-H23C	0.9600
C9-H9B	1.00 (4)	C20B-C21B	1.29 (2)
C10-H10A	1.00 (4)	C20B-H20B	0.9300
C10-H10B	0.93 (4)	C21B-C22B	1.56 (3)
C10-H10C	0.96 (4)	C21B-H21B	0.9300
C11-N3	1.329 (3)	C22B-C23B	1.47 (3)
C11-N2	1.351 (3)	C22B-H22C	0.9700
C11-S1	1.680 (2)	C22B-H22D	0.9700
C12-H11A	1.02 (3)	C23B-H23D	0.9600
C12-H11B	0.91 (3)	C23B-H23E	0.9600
C12-H11C	0.96 (3)	C23B-H23F	0.9600
C13-N3	1.455 (3)	C24-H24A	0.97 (4)
C13-H13A	0.9600	C24-H24B	1.02 (3)
C13-H13B	0.9600	C24-H24C	0.97 (3)
C13-H13C	0.9600	C25-N6	1.335 (3)
N1-N2	1.392 (3)	C25-N5	1.357 (3)
N2-H1	0.81 (3)	C25-S2	1.678 (2)
N3-H2	0.83 (3)	C26-N6	1.453 (3)
C14-N4	1.292 (3)	C26-H26A	0.9600
C14-C18	1.463 (3)	C26-H26B	0.9600
C14-C15	1.498 (3)	C26-H26C	0.9600
C15-C16	1.535 (3)	N4-N5	1.394 (2)
C15-H18A	0.93 (2)	N5-H3	0.84 (3)
C15-H18B	0.97 (3)	N6-H4	0.85 (3)
C16-C17	1.505 (3)		

N1-C1-C5	122.2 (2)
N1-C1-C2	129.2 (2)
C5-C1-C2	108.56 (18)
C1-C2-C3	104.79 (19)
C1-C2-H5A	111.1 (15)
C3-C2-H5A	113.8 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 5 \mathrm{~B}$	114.0 (16)
C3-C2-H5B	111.5 (15)
H5A-C2-H5B	102 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	104.5 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 4 \mathrm{~A}$	111.7 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 4 \mathrm{~A}$	112.7 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 4 \mathrm{~B}$	108.8 (14)
C2-C3-H4B	112.6 (14)
H4A-C3-H4B	107 (2)
C5-C4-C12	127.4 (2)
C5-C4-C3	112.30 (19)
C12-C4-C3	120.3 (2)
C4-C5-C1	109.8 (2)
C4-C5-C6	127.5 (2)
C1-C5-C6	122.7 (2)
C7-C6-C5	114.0 (2)
C7-C6-H6A	110.1 (13)
C5-C6-H6A	111.0 (13)
C7-C6-H6B	107.0 (16)
C5-C6-H6B	110.0 (17)
H6A-C6-H6B	104 (2)
C8-C7-C6	127.3 (3)
C8-C7-H7	119.7 (17)
C6-C7-H7	112.9 (17)
C7-C8- 9	128.0 (3)
C7-C8-H8	117.7 (16)
C9-C8-H8	114.3 (15)
C8-C9-C10	113.3 (3)
C8-C9-H9A	106 (2)
C10-C9-H9A	112 (2)
C8-C9-H9B	107 (2)
C10-C9-H9B	109 (2)
H9A-C9-H9B	110 (3)
C9-C10-H10A	113.2 (19)
C9-C10-H10B	113 (2)
H10A-C10-H10B	107 (3)
C9-C10-H10C	110 (2)
H10A-C10-H10C	105 (3)
H10B-C10-H10C	108 (3)
N3-C11-N2	116.2 (2)
N3-C11-S1	122.86 (18)
N2-C11-S1	120.97 (19)

C17-C16-H17B	112.7 (14)
C15-C16-H17B	111.6 (14)
H17A-C16-H17B	104 (2)
C18-C17-C24	127.8 (2)
C18-C17-C16	112.35 (19)
C24-C17-C16	119.8 (2)
C17-C18-C14	109.11 (19)
C17-C18-C19	128.8 (2)
C14-C18-C19	122.04 (19)
C20B-C19-C18	125.2 (6)
C20A-C19-C18	109.9 (2)
C20A-C19-H19A	109.7
C18-C19-H19A	109.7
C20A-C19-H19B	109.7
C18-C19-H19B	109.7
H19A-C19-H19B	108.2
C20B-C19-H19C	106.0
C18-C19-H19C	106.0
C20B-C19-H19D	106.0
C18-C19-H19D	106.0
H19C-C19-H19D	106.3
C21A-C20A-C19	133.1 (3)
C21A-C20A-H20A	113.5
C19-C20A-H20A	113.5
C20A-C21A-C22A	126.4 (4)
C20A-C21A-H21A	116.8
$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{~A}$	116.8
C21A-C22A-C23A	110.4 (3)
C21A-C22A-H22A	109.6
$\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~A}$	109.6
C21A-C22A-H22B	109.6
C23A-C22A-H22B	109.6
H22A-C22A-H22B	108.1
$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{~A}$	109.5
C22A-C23A-H23B	109.5
H23A-C23A-H23B	109.5
C22A-C23A-H23C	109.5
H23A-C23A-H23C	109.5
$\mathrm{H} 23 \mathrm{~B}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{C}$	109.5
C21B-C20B-C19	122.2 (14)
C21B-C20B-H20B	118.9
C19-C20B-H20B	118.9
C20B-C21B-C22B	157.0 (17)
C20B-C21B-H21B	101.5
C22B-C21B-H21B	101.5
C23B-C22B-C21B	112.7 (18)
$\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{H} 22 \mathrm{C}$	109.0
$\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{H} 22 \mathrm{C}$	109.0

$\mathrm{C} 4-\mathrm{C} 12-\mathrm{H} 11 \mathrm{~A}$	109.5 (17)
C4-C12-H11B	111.9 (18)
H11A-C12-H11B	108 (2)
C4-C12-H11C	112.6 (18)
H11A-C12-H11C	110 (2)
H11B-C12-H11C	105 (3)
N3-C13-H13A	109.5
N3-C13-H13B	109.5
H13A-C13-H13B	109.5
N3-C13-H13C	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	116.5 (2)
C11-N2-N1	119.4 (2)
C11-N2-H1	119.8 (19)
N1-N2-H1	120.8 (19)
C11-N3-C13	123.6 (2)
$\mathrm{C} 11-\mathrm{N} 3-\mathrm{H} 2$	118 (2)
C13-N3-H2	118 (2)
N4-C14-C18	120.8 (2)
N4-C14-C15	129.58 (19)
C18-C14-C15	109.57 (18)
C14-C15-C16	104.14 (19)
C14-C15-H18A	112.0 (15)
C16-C15-H18A	112.9 (14)
C14-C15-H18B	109.4 (14)
C16-C15-H18B	112.9 (14)
H18A-C15-H18B	106 (2)
C17-C16-C15	104.81 (19)
C17-C16-H17A	111.6 (15)
C15-C16-H17A	112.8 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-177.8(2)
C5-C1-C2-C3	0.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.2 (3)
C2-C3-C4-C5	-2.2 (3)
C2-C3-C4-C12	177.1 (2)
C12-C4-C5-C1	-176.9 (2)
C3-C4-C5-C1	2.3 (3)
C12-C4-C5-C6	2.3 (4)
C3-C4-C5-C6	-178.5 (2)
N1-C1-C5-C4	176.6 (2)
C2-C1-C5-C4	-1.4 (3)
N1-C1-C5-C6	-2.7(3)
C2-C1-C5-C6	179.3 (2)
C4-C5-C6-C7	73.9 (3)
C1-C5-C6-C7	-107.0 (3)
C5-C6-C7-C8	114.6 (3)

C23B-C22B-H22D	109.0
C21B-C22B-H22D	109.0
$\mathrm{H} 22 \mathrm{C}-\mathrm{C} 22 \mathrm{~B}-\mathrm{H} 22 \mathrm{D}$	107.8
C22B-C23B-H23D	109.5
$\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{H} 23 \mathrm{E}$	109.5
$\mathrm{H} 23 \mathrm{D}-\mathrm{C} 23 \mathrm{~B}-\mathrm{H} 23 \mathrm{E}$	109.5
$\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{H} 23 \mathrm{~F}$	109.5
H23D-C23B-H23F	109.5
$\mathrm{H} 23 \mathrm{E}-\mathrm{C} 23 \mathrm{~B}-\mathrm{H} 23 \mathrm{~F}$	109.5
C17-C24-H24A	114 (2)
C17-C24-H24B	110.5 (16)
H24A-C24-H24B	108 (3)
C17-C24-H24C	110.6 (18)
$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109 (3)
$\mathrm{H} 24 \mathrm{~B}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	105 (2)
N6-C25-N5	115.3 (2)
N6-C25-S2	123.71 (17)
N5-C25-S2	120.96 (17)
N6-C26-H26A	109.5
N6-C26-H26B	109.5
H26A-C26-H26B	109.5
N6-C26-H26C	109.5
H26A-C26-H26C	109.5
H26B-C26-H26C	109.5
C14-N4-N5	116.71 (18)
C25-N5-N4	117.8 (2)
C25-N5-H3	120.8 (17)
N4-N5-H3	121.4 (17)
C25-N6-C26	124.3 (2)
C25-N6-H4	117.6 (17)
C26-N6-H4	118.0 (18)
C15-C16-C17-C18	1.3 (3)
C15-C16-C17-C24	-178.2 (2)
C24-C17-C18-C14	178.0 (2)
C16-C17-C18-C14	-1.4 (3)
C24-C17-C18-C19	-4.4 (4)
C16-C17-C18-C19	176.2 (2)
N4-C14-C18-C17	-177.4 (2)
C15-C14-C18-C17	0.9 (3)
N4-C14-C18-C19	4.8 (3)
C15-C14-C18-C19	-176.9 (2)
C17-C18-C19-C20B	-0.8 (9)
C14-C18-C19-C20B	176.5 (9)
C17-C18-C19-C20A	-91.4 (3)
C14-C18-C19-C20A	85.9 (3)
C18-C19-C20A-C21A	139.9 (4)
C19-C20A-C21A-C22A	2.8 (6)

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-2.1(5)$	$\mathrm{C} 20 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}$	$121.9(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$128.0(4)$	$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}$	$-117.6(13)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$-179.33(19)$	$\mathrm{C} 19-\mathrm{C} 20 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}$	$-4(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$-1.8(4)$	$\mathrm{C} 20 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}$	$-95(4)$
$\mathrm{N} 3-\mathrm{C} 11-\mathrm{N} 2-\mathrm{N} 1$	$\mathrm{C} 18-\mathrm{C} 14-\mathrm{N} 4-\mathrm{N} 5$	$178.16(19)$	
$\mathrm{S} 1-\mathrm{C} 11-\mathrm{N} 2-\mathrm{N} 1$	$178.55(17)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{N} 4-\mathrm{N} 5$	$0.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 11$	$173.8(2)$	$\mathrm{N} 6-\mathrm{C} 25-\mathrm{N} 5-\mathrm{N} 4$	$0.8(3)$
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 13$	$-175.1(2)$	$\mathrm{S} 2-\mathrm{C} 25-\mathrm{N} 5-\mathrm{N} 4$	$-179.57(16)$
$\mathrm{S} 1-\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 13$	$5.1(4)$	$\mathrm{N} 14-\mathrm{N} 4-\mathrm{N} 5-\mathrm{C} 25$	$-175.3(2)$
$\mathrm{N} 4-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$178.1(2)$	$\mathrm{N} 5-\mathrm{C} 25-\mathrm{N} 6-\mathrm{C} 26$	$176.9(2)$
$\mathrm{C} 18-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-0.1(3)$		$-2.7(4)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-0.6(3)$		

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 \cdots \mathrm{~S}^{\mathrm{i}}$	$0.81(3)$	$2.80(3)$	$3.591(2)$	$167(2)$
$\mathrm{C} 2 — \mathrm{H} 5 B \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.97(3)$	$2.90(3)$	$3.457(2)$	$117.4(18)$
$\mathrm{N} 5 — \mathrm{H} 3 \cdots 2^{\mathrm{ii}}$	$0.84(3)$	$2.75(3)$	$3.585(2)$	$172(2)$
$\mathrm{C} 15 — \mathrm{H} 18 A \cdots \mathrm{~S}^{\mathrm{ii}}$	$0.93(2)$	$2.98(2)$	$3.472(2)$	$115.0(17)$

Symmetry codes: (i) $-x,-y,-z+2$; (ii) $-x+1,-y,-z+1$.

