

ISSN 2414-3146

Received 29 August 2023 Accepted 10 January 2024

Edited by R. J. Butcher, Howard University, USA

Keywords: 4-amino 3-nitrobenzoic acid; Mn^{II}; crystal structure; hydrogen bond.

CCDC reference: 2324651

Structural data: full structural data are available from iucrdata.iucr.org

Synthesis and structure of *trans*-bis(4-amino-3-nitrobenzoato- κO)bis(4-amino-3-nitrobenzoic acid- κO)diaquamanganese(II) dihydrate

Feruza S. Narmanova,^a Khayit Kh. Turaev,^a Aziz B. Ibragimov^b and Jamshid M. Ashurov^c*

^aTermez State University, Barkamol Avlod Street 43, Termez city, Uzbekistan, ^bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, 100170, Mirzo Ulug'bek str., 77a, Uzbekistan, and ^cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan. *Correspondence e-mail: ashurovjamshid1@gmail.com

The manganese title complex, $[Mn(C_7H_5N_2O_4)_2(C_7H_6N_2O_4)_2(H_2O)_2]\cdot 2H_2O$, is one of the first 4-amino 3-nitrobenzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group $P2_1/n$ with the complex molecules located on inversion centers. Four 4 A3NBA ligand molecules are monodentately coordinated by the Mn^{2+} ion through the carboxylic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water molecules, giving rise to a distorted octahedron, and two water molecules are in the outer coordination sphere. There are two intramolecular hydrogen bonds in the complex molecule. The first is of the common $N-H\cdots O=N$ type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxylate groups. In the crystal, an intricate system of intermolecular hydrogen bonds links the complex molecules into a three-dimensional-network.

Structure description

The molecular structure of the title complex is shown in Fig. 1. It crystallizes in the centrosymmetric monoclinic space group $P2_1/n$ with the complex molecules located on inversion centers. Four 4-amino 3-nitrobenzoic acid (4 A3NBA) ligands are monodentately coordinated by the Mn²⁺ ion through the oxygen atoms of carboxylic groups while two other positions of the inner coordination sphere are occupied by water molecules. The outer coordination sphere contains two water molecules, *i.e.* the complex is crystal hydrate. The length of the Mn–O1 bond is 2.1575 (12) Å while Mn–O5 is

Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. Symmetry code: (i) 1 - x, 1 - y, -z.

2.1600 (13) Å and Mn-O1W = 2.1630 (14) Å and bond angles are in the range 84.29 (5) to 95.71 (5)°. The geometry of the manganese atom is therefore a slightly distorted octahedron. The carboxylate groups C7,O2,O1 and C14,O6,O5 are practically coplanar with the aromatic rings to which they are attached, forming dihedral angles of 4.1 (1) and 11.9 (1)°, respectively. The analogous angles for nitro groups N1,O3,O4 and N3,O7,O8 are 2.82 (9) and 8.6 (1)°. Thus in the ligand with the C8–C13 aromatic ring, the functional groups are more inclined relatively to the benzene ring.

There are two intramolecular hydrogen bonds in the complex molecule (Table 1). The first bond is of the usual $N-H\cdots O$ Type, closing a six-membered ring with an $S_1^1(6)$ graph-set motif (Etter 1990; Ibragimov *et al.*, 2017; Ruzmetov *et al.*, 2022). The second is a rarely occurring very strong hydrogen bond closing a nine-membered ring where a common proton, H20, is shared by two uncoordinated oxygen

Figure 2

The crystal packing viewed along [100] showing the $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (dashed red lines) in the crystal structure.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

	• • • •			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O3^{i}$	0.83 (2)	2.06 (2)	2.8850 (19)	176 (2)
$O1W-H1WA\cdots O4^{i}$	0.83 (2)	2.55 (2)	3.1418 (19)	130 (2)
$O1W-H1WA\cdots N1^{i}$	0.83 (2)	2.63 (2)	3.4029 (19)	157 (2)
$O1W - H1WB \cdots O2W$	0.81 (2)	1.98 (2)	2.784 (2)	170 (2)
O2−H2O···O5	1.27 (4)	2.57 (4)	3.448 (2)	124 (2)
O6−H2O···O2	1.20 (4)	1.27 (4)	2.4541 (18)	168 (4)
$N2-H2A\cdots O6^{ii}$	0.86	2.19	3.0160 (19)	162
$N2-H2B\cdots O4$	0.85	1.99	2.629 (2)	131
$N4-H4A\cdots O8$	0.87	2.03	2.648 (2)	128
$N4-H4B\cdots O2W^{i}$	0.87	2.16	3.021 (2)	173
$C5-H5\cdots O2^{ii}$	0.93	2.57	3.489 (2)	170
$C9-H9\cdots N2^{iii}$	0.93	2.66	3.544 (2)	160
$C12-H12\cdots O8^{iv}$	0.93	2.42	3.178 (2)	138
$O2W-H2WA\cdots O7^{v}$	0.86	2.14	2.995 (2)	173
$O2W - H2WB \cdot \cdot \cdot O1W^{vi}$	0.85	2.39	3.127 (2)	145
$O2W-H2WB\cdots O5^{vii}$	0.85	2.65	3.341 (2)	139

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2};$ (v) -x + 2, -y + 1, -z + 1; (vi) -x + 2, -y + 1, -z + 1; (vi) -x + 2, -y + 1, -z; (vii) x + 1, y, z.

Table 2	
Experimental	details

Crystal data	
Chemical formula	$[Mn(C_{7}H_{4}MnN_{2}O_{4})_{2}]$
	$(C_7H_6MnN_2O_4)_2(H_2O)_2]\cdot 2H_2O$
M.	853.54
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	7.0419 (1), 19.2513 (3), 12.7175 (2)
β (°)	100.513 (2)
$V(\dot{A}^3)$	1695.12 (5)
Z	2
Radiation type	Cu <i>Kα</i>
$\mu \text{ (mm}^{-1})$	4.08
Crystal size (mm)	$0.28 \times 0.22 \times 0.14$
Data collection	
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2023)
T_{\min}, T_{\max}	0.523, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3291, 3291, 2966
R _{int}	0.037
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.097, 1.06
No. of reflections	3291
No. of parameters	269
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.270.44

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

atoms O2 and O6 of neighboring carboxylate groups. The atom H20, situated between the two oxygen atoms, is located closer to atom O2 at a distance of 1.270 (2) Å [and 1.198 (2) Å from O6]. Despite this, it is impossible to indicate which of the four carboxylic groups present are deprotonated. The total negative charge of the carboxylic groups is 2 and it compensates the +2 charge of the Mn^{2+} ion.

There are 17 proton-acceptor oxygen atoms, 4 proton-donor nitrogen atoms and 2 water molecules in the title complex. These atoms are involved in a complex system of intermolecular hydrogen bonds (Table 1). Moreover, three weak $C-H\cdots O$ hydrogen bonds are also observed in the structure (Table 1, Fig. 2). Together these hydrogen bonds link the complex molecules into a three-dimensional network (Fig. 2.).

Synthesis and crystallization

All reagents and solvents were purchased from Sigma-Aldrich (Darmstadt, Germany) and they were used as received. MnCl₂·H₂O (0.198 g, 1.0 mmol) was dissolved in a small amount of water. 4-Amino 3-nitrobenzoic acid (0.364 g, 2 mmol) was dissolved in a mixed solvent of 3 ml of absolute alcohol and 3 ml of distilled water. After dropwise addition of the 4 A3NBA solution to the manganese salt solution, the resultant solution was stirred for 2 h with a magnetic stirrer at 55°C. The solution was allowed to stand at 30°C in a beaker with small holes in the cover for evaporation. After about eight days, block-shaped single crystals ofthe title compound appeared. Analysis calculated: $C_{28}H_{30}MnN_8O_{20}$: C, 39.40%; H, 3.54; N, 13.13%. Found: C, 39.32%; H, 3.47%; N, 13.08%.

Refinement

Crystal data, data collection and structure refinement details for the structure of the synthesized compound are summarized in Table 2.

Funding information

The authors gratefully acknowledge the Ministry of Higher Education, Science and Innovation for financial support (project No. F3–20200929348) and would also like to thank the Uzbekistan government for direct financial support of this research.

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Ibragimov, A. B., Ashurov, Z. M. & Zakirov, B. S. (2017). J. Struct. Chem. 58, 588–590.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). *Acta Cryst.* E78, 660–664.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2024). **9**, x240040 [https://doi.org/10.1107/S2414314624000403]

Synthesis and structure of *trans*-bis(4-amino-3-nitrobenzoato-*kO*)bis(4-amino-3-nitrobenzoic acid-*kO*)diaquamanganese(II) dihydrate

Feruza S. Narmanova, Khayit Kh. Turaev, Aziz B. Ibragimov and Jamshid M. Ashurov

trans-Bis(4-amino-3-nitrobenzoato-kO)bis(4-amino-3-nitrobenzoic acid-kO)diaquamanganese(II) dihydrate

Crystal data

 $[Mn(C_7H_3MnN_2O_4)_2(C_7H_6MnN_2O_4)_2(H_2O)_2] \cdot 2H_2O$ $M_r = 853.54$ Monoclinic, $P2_1/n$ a = 7.0419 (1) Å b = 19.2513 (3) Å c = 12.7175 (2) Å $\beta = 100.513$ (2)° V = 1695.12 (5) Å³ Z = 2

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer Radiation source: micro-focus sealed X-ray tube Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) $T_{min} = 0.523, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.097$ S = 1.063291 reflections 269 parameters 3 restraints Primary atom site location: dual F(000) = 878 $D_x = 1.672 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 11377 reflections $\theta = 2.3-71.4^{\circ}$ $\mu = 4.08 \text{ mm}^{-1}$ T = 293 KBlock, light pink $0.28 \times 0.22 \times 0.14 \text{ mm}$

3291 measured reflections 3291 independent reflections 2966 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 71.5^{\circ}, \theta_{min} = 4.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -23 \rightarrow 22$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 0.2227P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms of water molecules and amino groups were located in difference-Fourier maps and refined freely. The H atoms of the benzene ring were calculated geometrically with C—H = 0.93 A° and $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mn1	0.500000	0.500000	0.000000	0.02947 (13)
01	0.4809 (2)	0.39058 (6)	0.03322 (11)	0.0489 (4)
O1W	0.8075 (2)	0.50832 (7)	0.05836 (12)	0.0464 (3)
H1WA	0.848 (4)	0.5418 (9)	0.0964 (19)	0.070*
H1WB	0.879 (4)	0.4760 (9)	0.078 (2)	0.070*
02	0.6022 (2)	0.36153 (7)	0.20147 (10)	0.0515 (4)
H2O	0.619 (6)	0.422 (2)	0.242 (3)	0.155 (15)*
O3	0.5562 (2)	0.13009 (7)	0.31842 (10)	0.0560 (4)
O4	0.4652 (2)	0.04466 (7)	0.21207 (11)	0.0545 (4)
05	0.4355 (2)	0.52907 (8)	0.15374 (10)	0.0457 (3)
O6	0.6122 (2)	0.47449 (7)	0.29174 (10)	0.0483 (4)
07	0.7667 (2)	0.59190 (8)	0.62838 (11)	0.0590 (4)
08	0.6914 (2)	0.69874 (8)	0.65088 (11)	0.0612 (4)
N1	0.4964 (2)	0.10712 (7)	0.22733 (11)	0.0363 (3)
N2	0.3472 (2)	0.06488 (7)	0.00606 (12)	0.0431 (4)
H2A	0.302809	0.057204	-0.060340	0.052*
H2B	0.365807	0.034904	0.056060	0.052*
N3	0.6948 (2)	0.64740 (8)	0.59270 (12)	0.0410 (4)
N4	0.5654 (3)	0.77954 (8)	0.48424 (14)	0.0481 (4)
H4A	0.587279	0.778868	0.553450	0.058*
H4B	0.516269	0.814368	0.445160	0.058*
C1	0.4755 (2)	0.27328 (8)	0.08203 (13)	0.0297 (3)
C2	0.5071 (2)	0.22409 (8)	0.16193 (13)	0.0294 (3)
H2	0.557893	0.237429	0.231674	0.035*
C3	0.4636 (2)	0.15439 (8)	0.13907 (12)	0.0291 (3)
C4	0.3884 (2)	0.13131 (8)	0.03426 (12)	0.0298 (3)
C5	0.3551 (3)	0.18352 (9)	-0.04571 (13)	0.0351 (4)
Н5	0.303735	0.170966	-0.115751	0.042*
C6	0.3963 (2)	0.25158 (9)	-0.02257 (13)	0.0333 (4)
H6	0.371609	0.284412	-0.076992	0.040*
C7	0.5212 (2)	0.34754 (8)	0.10562 (13)	0.0335 (4)
C8	0.5352 (2)	0.59261 (9)	0.31259 (13)	0.0330 (4)
С9	0.6043 (2)	0.59219 (9)	0.42108 (13)	0.0338 (4)
Н9	0.643858	0.550494	0.455105	0.041*
C10	0.6160 (2)	0.65326 (9)	0.48065 (13)	0.0333 (4)
C11	0.5581 (2)	0.71818 (9)	0.43305 (15)	0.0358 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12	0.4899 (3)	0.71660 (9)	0.32115 (15)	0.0409 (4)	
H12	0.453293	0.758055	0.285614	0.049*	
C13	0.4760 (3)	0.65655 (10)	0.26390 (14)	0.0384 (4)	
H13	0.426366	0.657803	0.190964	0.046*	
C14	0.5253 (3)	0.52789 (9)	0.24730 (13)	0.0352 (4)	
O2W	1.0872 (2)	0.40951 (8)	0.13520 (11)	0.0542 (4)	
H2WA	1.119577	0.406931	0.203299	0.081*	
H2WB	1.161577	0.433931	0.103999	0.081*	

Atomic displacement parameters (2	$Å^2)$
-----------------------------------	--------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Mn1	0.0436 (2)	0.02138 (19)	0.01972 (19)	-0.00214 (14)	-0.00417 (15)	0.00137 (12)
01	0.0807 (10)	0.0235 (6)	0.0358 (7)	-0.0052 (6)	-0.0070 (6)	0.0050 (5)
O1W	0.0456 (7)	0.0419 (8)	0.0444 (8)	0.0030 (6)	-0.0114 (6)	-0.0121 (6)
O2	0.0808 (10)	0.0297 (7)	0.0340 (7)	-0.0014 (6)	-0.0157 (6)	-0.0019 (5)
03	0.0926 (11)	0.0393 (7)	0.0283 (7)	-0.0025 (7)	-0.0099 (7)	0.0063 (5)
O4	0.0851 (10)	0.0251 (6)	0.0454 (8)	-0.0059 (6)	-0.0086 (7)	0.0091 (5)
05	0.0584 (8)	0.0528 (8)	0.0221 (6)	0.0066 (6)	-0.0030 (5)	-0.0078 (5)
06	0.0748 (9)	0.0322 (7)	0.0303 (7)	0.0027 (6)	-0.0106 (6)	-0.0053 (5)
07	0.0864 (11)	0.0519 (9)	0.0318 (7)	0.0122 (8)	-0.0079 (7)	0.0002 (6)
08	0.0824 (11)	0.0605 (9)	0.0366 (8)	0.0046 (8)	-0.0006 (7)	-0.0225 (7)
N1	0.0459 (8)	0.0285 (7)	0.0305 (7)	0.0019 (6)	-0.0038 (6)	0.0066 (5)
N2	0.0643 (10)	0.0265 (7)	0.0336 (8)	-0.0027 (7)	-0.0044 (7)	-0.0028 (6)
N3	0.0479 (9)	0.0443 (9)	0.0287 (7)	-0.0013 (7)	0.0012 (6)	-0.0084 (6)
N4	0.0589 (10)	0.0334 (8)	0.0510 (10)	0.0015 (7)	0.0072 (8)	-0.0093 (7)
C1	0.0353 (8)	0.0235 (8)	0.0280 (8)	0.0022 (6)	0.0001 (6)	0.0019 (6)
C2	0.0360 (8)	0.0249 (8)	0.0247 (7)	0.0012 (6)	-0.0010 (6)	-0.0008 (6)
C3	0.0347 (8)	0.0242 (8)	0.0267 (8)	0.0035 (6)	0.0011 (6)	0.0042 (6)
C4	0.0333 (8)	0.0243 (7)	0.0299 (8)	0.0013 (6)	0.0003 (6)	-0.0020 (6)
C5	0.0468 (9)	0.0304 (9)	0.0244 (8)	-0.0012 (7)	-0.0036 (7)	-0.0015 (6)
C6	0.0422 (9)	0.0282 (8)	0.0268 (8)	0.0010 (7)	-0.0013 (7)	0.0045 (6)
C7	0.0421 (9)	0.0248 (8)	0.0307 (8)	0.0003 (7)	-0.0012 (7)	0.0030 (6)
C8	0.0391 (9)	0.0335 (9)	0.0252 (8)	-0.0017 (7)	0.0030 (6)	-0.0033 (6)
C9	0.0394 (9)	0.0312 (8)	0.0286 (8)	0.0011 (7)	0.0004 (7)	-0.0015 (6)
C10	0.0362 (8)	0.0354 (9)	0.0264 (8)	-0.0002 (7)	0.0012 (7)	-0.0027 (6)
C11	0.0331 (8)	0.0337 (9)	0.0402 (9)	-0.0015 (7)	0.0058 (7)	-0.0043 (7)
C12	0.0484 (10)	0.0324 (9)	0.0401 (10)	0.0039 (8)	0.0032 (8)	0.0050 (7)
C13	0.0437 (9)	0.0418 (10)	0.0271 (8)	0.0016 (8)	-0.0005 (7)	0.0029 (7)
C14	0.0432 (9)	0.0372 (9)	0.0237 (8)	-0.0032 (7)	0.0021 (7)	-0.0037 (7)
O2W	0.0659 (9)	0.0496 (8)	0.0448 (8)	0.0015 (7)	0.0040 (7)	0.0036 (6)

Geometric parameters (Å, °)

2.1575 (12)	N4—H4A	0.8655
2.1575 (12)	N4—H4B	0.8680
2.1600 (13)	C1—C2	1.377 (2)
2.1600 (13)	C1—C6	1.409 (2)
	2.1575 (12) 2.1575 (12) 2.1600 (13) 2.1600 (13)	2.1575 (12) N4—H4A 2.1575 (12) N4—H4B 2.1600 (13) C1—C2 2.1600 (13) C1—C6

Mn1—O1W	2 1630 (14)	C1 - C7	1 484 (2)
Mn1—O1W ⁱ	2.1630 (14)	$C^2 - C^3$	1.395(2)
01-C7	1 233 (2)	C2—H2	0.9300
O1W $H1WA$	0.827(16)	$C_2 - C_4$	1.413(2)
O1W H1WB	0.827(10)	C_{4}	1.419(2)
$O_2 C_7$	0.813(10)	C_{1}	1.419(2) 1.363(2)
02 420	1.277(2) 1.27(4)	C5_H5	1.303(2)
02—1120 03 N1	1.27(4) 1.2308(10)	С5—115	0.9300
03—N1	1.2390(19) 1.2314(10)	C_{0}	0.3300
04—N1	1.2314(19) 1.242(2)	C_{0}	1.377(2)
05	1.242(2)	C_{0}	1.400 (2)
06 1120	1.273(2)	C_{0}	1.492(2)
00—H20	1.20(4)	C9	1.393 (2)
0/-N3	1.233(2)	C9—H9	0.9300
08—N3	1.237(2)		1.416 (2)
NI-C3	1.4307 (19)		1.41/(3)
N2—C4	1.345 (2)		1.360 (3)
N2—H2A	0.8581	C12—H12	0.9300
N2—H2B	0.8510	C13—H13	0.9300
N3—C10	1.436 (2)	O2W—H2WA	0.8558
N4—C11	1.345 (2)	O2W—H2WB	0.8537
Ol ¹ —Mnl—Ol	180.0	C3—C2—H2	119.7
$O1^{i}$ -Mn1-O5 ⁱ	92.57 (6)	C2—C3—C4	121.96 (14)
$O1$ — $Mn1$ — $O5^{1}$	87.43 (6)	C2—C3—N1	116.77 (14)
$O1^{i}$ —Mn1—O5	87.43 (6)	C4—C3—N1	121.27 (14)
O1—Mn1—O5	92.57 (6)	N2—C4—C3	125.16 (15)
$O5^{i}$ —Mn1—O5	180.0	N2—C4—C5	118.87 (14)
O1 ⁱ —Mn1—O1W	84.29 (5)	C3—C4—C5	115.97 (14)
O1—Mn1—O1W	95.71 (5)	C6—C5—C4	121.70 (15)
O5 ⁱ —Mn1—O1W	88.12 (5)	C6—C5—H5	119.1
O5—Mn1—O1W	91.88 (5)	C4—C5—H5	119.1
$O1^{i}$ —Mn1—O1W ⁱ	95.71 (5)	C5—C6—C1	121.42 (15)
O1-Mn1-O1W ⁱ	84.29 (5)	С5—С6—Н6	119.3
$O5^{i}$ —Mn1—O1W ⁱ	91.88 (5)	C1—C6—H6	119.3
O5-Mn1-O1W ⁱ	88.12 (5)	O1—C7—O2	124.97 (16)
O1W-Mn1-O1W ⁱ	180.0	O1—C7—C1	118.99 (15)
C7—O1—Mn1	142.04 (12)	O2—C7—C1	116.03 (14)
Mn1—O1W—H1WA	118.6 (17)	C9—C8—C13	117.94 (15)
Mn1—O1W—H1WB	125.3 (18)	C9—C8—C14	121.66 (15)
H1WA—O1W—H1WB	106 (2)	C13—C8—C14	120.40 (15)
C7—O2—H2O	124.8 (18)	C8—C9—C10	121.00 (16)
C14—O5—Mn1	135.11 (13)	С8—С9—Н9	119.5
C14—O6—H2O	120.4 (19)	С10—С9—Н9	119.5
O4—N1—O3	121.07 (14)	C9—C10—C11	121.91 (15)
O4—N1—C3	119.93 (14)	C9—C10—N3	116.57 (15)
O3—N1—C3	119.00 (14)	C11—C10—N3	121.50 (15)
C4—N2—H2A	116.6	N4—C11—C10	125.85 (17)
C4—N2—H2B	116.7	N4-C11-C12	118.74 (17)

H2A—N2—H2B	126.7	C10-C11-C12	115.41 (15)
O7—N3—O8	121.58 (15)	C13—C12—C11	122.26 (16)
O7—N3—C10	119.44 (14)	C13—C12—H12	118.9
O8—N3—C10	118.98 (16)	C11—C12—H12	118.9
C11—N4—H4A	117.6	C12—C13—C8	121.45 (16)
C11—N4—H4B	115.2	С12—С13—Н13	119.3
H4A—N4—H4B	124.9	C8—C13—H13	119.3
C2—C1—C6	118.40 (14)	O5—C14—O6	123.99 (16)
C2—C1—C7	120.90 (14)	O5—C14—C8	118.82 (16)
C6—C1—C7	120.70 (14)	O6—C14—C8	117.19 (15)
C1—C2—C3	120.53 (15)	H2WA—O2W—H2WB	115.4
C1—C2—H2	119.7		
C6—C1—C2—C3	0.7 (2)	C13—C8—C9—C10	-0.2 (3)
C7—C1—C2—C3	179.94 (15)	C14—C8—C9—C10	178.81 (16)
C1—C2—C3—C4	0.8 (3)	C8—C9—C10—C11	-0.1 (3)
C1-C2-C3-N1	-178.46 (15)	C8—C9—C10—N3	-178.47 (16)
O4—N1—C3—C2	-178.27 (16)	O7—N3—C10—C9	7.9 (3)
O3—N1—C3—C2	1.7 (2)	O8—N3—C10—C9	-173.23 (17)
O4—N1—C3—C4	2.5 (2)	O7—N3—C10—C11	-170.52 (17)
O3—N1—C3—C4	-177.55 (16)	O8—N3—C10—C11	8.4 (3)
C2—C3—C4—N2	178.46 (16)	C9—C10—C11—N4	-179.64 (18)
N1—C3—C4—N2	-2.3 (3)	N3—C10—C11—N4	-1.3 (3)
C2—C3—C4—C5	-1.7 (2)	C9—C10—C11—C12	-0.6 (3)
N1—C3—C4—C5	177.57 (15)	N3-C10-C11-C12	177.70 (16)
N2-C4-C5-C6	-179.08 (17)	N4-C11-C12-C13	-179.19 (18)
C3—C4—C5—C6	1.0 (3)	C10-C11-C12-C13	1.7 (3)
C4—C5—C6—C1	0.5 (3)	C11—C12—C13—C8	-2.1 (3)
C2-C1-C6-C5	-1.4 (3)	C9—C8—C13—C12	1.3 (3)
C7—C1—C6—C5	179.42 (17)	C14—C8—C13—C12	-177.73 (17)
Mn1—O1—C7—O2	0.8 (3)	Mn1-05-C14-06	-51.2 (3)
Mn1—O1—C7—C1	-178.67 (15)	Mn1	128.20 (16)
C2-C1-C7-O1	-175.97 (17)	C9—C8—C14—O5	169.25 (17)
C6—C1—C7—O1	3.2 (3)	C13—C8—C14—O5	-11.7 (3)
C2—C1—C7—O2	4.5 (3)	C9—C8—C14—O6	-11.3 (3)
C6—C1—C7—O2	-176.31 (16)	C13—C8—C14—O6	167.69 (17)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01 <i>W</i> —H1 <i>WA</i> ···O3 ⁱⁱ	0.83 (2)	2.06 (2)	2.8850 (19)	176 (2)
O1W—H1 WA ···O4 ⁱⁱ	0.83 (2)	2.55 (2)	3.1418 (19)	130 (2)
O1 <i>W</i> —H1 <i>WA</i> ···N1 ⁱⁱ	0.83 (2)	2.63 (2)	3.4029 (19)	157 (2)
O1 <i>W</i> —H1 <i>WB</i> ···O2 <i>W</i>	0.81 (2)	1.98 (2)	2.784 (2)	170 (2)
O2—H2 <i>O</i> ···O5	1.27 (4)	2.57 (4)	3.448 (2)	124 (2)
O6—H2 <i>O</i> ···O2	1.20 (4)	1.27 (4)	2.4541 (18)	168 (4)

N2—H2A…O6 ⁱⁱⁱ	0.86	2.19	3.0160 (19)	162	
N2—H2 <i>B</i> …O4	0.85	1.99	2.629 (2)	131	
N4—H4 <i>A</i> …O8	0.87	2.03	2.648 (2)	128	
N4—H4 B ···O2 W ⁱⁱ	0.87	2.16	3.021 (2)	173	
С5—Н5…О2 ^{ііі}	0.93	2.57	3.489 (2)	170	
C9—H9····N2 ^{iv}	0.93	2.66	3.544 (2)	160	
C12—H12···O8 ^v	0.93	2.42	3.178 (2)	138	
O2W— $H2WA$ ···O7 ^{vi}	0.86	2.14	2.995 (2)	173	
O2W—H2 WB ···O1 W ^{vii}	0.85	2.39	3.127 (2)	145	
O2 <i>W</i> —H2 <i>WB</i> ····O5 ^{viii}	0.85	2.65	3.341 (2)	139	

Symmetry codes: (ii) -*x*+3/2, *y*+1/2, -*z*+1/2; (iii) *x*-1/2, -*y*+1/2, *z*-1/2; (iv) *x*+1/2, -*y*+1/2, *z*+1/2; (v) *x*-1/2, -*y*+3/2, *z*-1/2; (vi) -*x*+2, -*y*+1, -*z*+1; (vii) -*x*+2, -*y*+1, -*z*; (viii) *x*+1, *y*, *z*.