IUCrData

ISSN 2414-3146

Received 18 December 2023 Accepted 9 January 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; amine; palladium(II) complex; monodentate ligand.

CCDC reference: 2310033

Structural data: full structural data are available from iucrdata.iucr.org

ACCESS

Structure description

The chemistry of Pd^{II} compounds with diverse ligands represents a rich area within organometallic chemistry, extensively explored in organic synthesis (Hartwig, 1998; Müller & Beller, 1998). Pd^{II} compounds also exhibit cytotoxic activity, which makes them interesting for certain therapeutic applications. Moreover, Pd^{II} compounds with amine ligands have a central role in catalytic conversions due to the hydrogen bond developed between the amino group and the catalyst. In the presence of excess amine, 16-electron $PdCl_2L_2$ (L = amine) adducts, usually existing as a mixture of *cis* and *trans* isomers, emerge as viable starting materials for cyclopalladations (Ryabov, 1990; Cattalini & Martelli, 1969). While monodentate Pd^{II}-amine complexes tend to display general instability as reaction intermediates, bis(amine)-Pd^{II} complexes have garnered substantial attention for their involvement as intermediates in amination reactions (Widenhoefer & Buchwald, 1996; Seligson & Trogler, 1991). In this context, our focus has shifted towards complexes derived from optically pure chiral amines. We present here the molecular and crystal structures of *trans*-dichlorido bis[(S)-(-)-1-[(4-methylphenyl)ethylamine]palladium(II).

The asymmetric unit comprises a single molecule, as shown in Fig. 1. The molecular complex adopts a square-planar metal coordination environment around the central Pd^{II}

trans-Dichloridobis[(S)-(-)-1-(4-methylphenyl)ethylamine- κN]palladium(II)

Guadalupe Hernández Téllez,^a Gloria E. Moreno Morales,^a Pankaj Sharma,^b Rodary Gonzalez^b and Bertin Anzaldo^a*

^aLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 72592 Puebla, Mexico, and ^bInstituto de Química Universidad Autónoma de México UNAM, Circuito Exterior Cd. Universitaria, PO Box 04510, Ciudad de México, Mexico, *Correspondence e-mail: bertinanzaldo@outlook.com

The title complex, [PdCl₂(C₉H₁₃N)₂], comprises a single molecule in the asymmetric unit. The Pd^{II} atom is tetracoordinated by two N atoms from two trans-aligned organic ligands and two Cl ligands, forming a square-planar metal coordination environment. The distances from the ortho-H atoms on the phenyl ring to the central Pd^{II} atom fall within the range 4.70–5.30 Å, precluding any significant intramolecular Pd···H interactions.

Published under a CC BY 4.0 licence

🖸 🛈 open 🕁

Figure 1 The molecular structure of the title complex with displacement ellipsoids drawn at the 50% probability level.

atom. There are slight distortions from the ideal square-planar geometry, as revealed by a deviation of 0.025 Å of the Pd^{II} atom from the plane defined by atoms Cl2, N2, Cl1, N1. The interatomic distances from the central Pd^{II} atom to the ligand atoms are 2.039 (4) Å [Pd1-N1] and 2.053 (4) Å [Pd1-N2]; the average Pd – Cl bond length is 2.298 Å. The pairs of Cl and amine ligands are *trans*-aligned around the central Pd^{II} atom and characterized by a Cl1-Pd1-Cl2 angle of 177.22 (6)° and an N1-Pd1-N2 angle of $179.39 (18)^{\circ}$; the Cl1-Pd1-N1 angle amounts to 88.25 (12)°, with other angles approximately 90°. The sp^3 hybridization of the N atoms and the C9 and C17 atoms cause the non-planarity of the molecular structure. The amine ligands are arranged differently around the central Pd^{II} atom. The Cl1–Pd1–N1–C1 torsion $73.2 (3)^{\circ}$, compared angle is to 53.5 (3)° for Cl2-Pd1-N2-C17. Both amine ligands exhibit a gauche conformation, as revealed by the torsion angle $C17 - N2 - N1 - C1 = -55.6 (4)^{\circ}$.

A view of the crystal packing shows that individual molecules are organized into supramolecular ribbons defined by $C-H\cdots Cl$ and $N-H\cdots Cl$ hydrogen bonding interactions (Table 1); the ribbons extend parallel to [100] (Fig. 2). The cohesion between the ribbons is accomplished mainly by weak

Figure 2

The crystal packing of the title complex in a projection along [100]. The dashed lines indicate intermolecular hydrogen bonds. All H atoms that are not involved in these interactions have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level.

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdots Cl1$	0.98	2.92	3.479 (5)	117
$C17 - H17 \cdot \cdot \cdot Cl2$	0.98	2.65	3.323 (5)	126
$N1 - H1A \cdots Cl1^{i}$	0.89	2.71	3.586 (4)	168
$N2-H2A\cdots Cl2^{ii}$	0.89	2.66	3.524 (4)	165
$N2-H2B\cdots Cl2^{iii}$	0.89	2.63	3.355 (4)	139

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

van der Waals interactions (Steiner, 1996; Desiraju, 1996). The $Pd \cdot \cdot Pd$ separations between neighboring Pd^{II} complexes vary from 5.5027 (5) to 6.5385 (5) Å, indicating that there is no strong interaction among these metal atoms.

A search of the Cambridge Structural Database (CSD, version 5.42, current as of November 2023; Groom et al., 2016) vielded thirteen related entries to the title bis(amine)-Pd^{II} complex: UMIBOH (Sui-Seng & Zargarian, 2003). UMIBOH01 (Karami et al., 2018), WOCLEF (Decken et al., 2000), DUKMAA (Ha, 2020), BUYCIJ (Al-Jibori et al., 2015), TUWKEB (Grishin et al., 2003), YEFNUT (Vazquez et al., 2006), YEFNUT01 (Sabater et al., 2013), GAZZAI (Kuz'mina et al., 1987), GAZZEM (Kuz'mina et al., 1987), PEWZEY (Karami et al., 2013), POHKON (Martin et al., 2008), and CUGGIU (Jones et al., 1984). In the crystal structure of PEWZEY $(P2_1/c)$, molecules are linked by intermolecular N-H···Cl hydrogen bonds into zigzag chains running parallel to the *b* axis. The asymmetric unit of GAZZEM $(P2_1)$ comprises one molecule. In YEFNUT (C2), the amine ligands are trans-coordinated to a PdCl₂ core, and arranged in a gauche conformation. The asymmetric unit of TUWKEB (C2/ c) comprises one molecule. In DUKMAA $(I4_1cd)$, the complexes and solvent DMSO molecules are linked by $N-H\cdots O$, $N-H\cdots Cl$, $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds. The crystal structure of UMIBOH crystallizes in space group $P4_2/n$ with four independent molecules within the unit cell. The asymmetric unit of GAZZAI (P4₃2₁2) comprises one molecule. In POHKON (P21/n), the Pd^{II} atom has a distorted square-planar environment with the ligands occupying a transconfiguration with two molecules of dimethyl sulfoxide (DMSO) in the crystal. In the crystal structure of BUYCIJ, a hydrogen bonding interaction between the water molecule and the metal-bound chlorido ligand is present. CUGGIU comprises a Pd^{II} atom coordinated by the nitrogen atoms of four benzylamine ligands with hydrogen bonding of the N-H₂ groups with the Cl⁻ ion. The WOCLEF (P2₁/n) compound crystallizes with two molecules of DMSO and shows $N-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds between the complex and the DMSO molecules.

Synthesis and crystallization

A solution of bis(benzonitrile)palladium(II) chloride (0.66 g, 0.17 mmol) in CH_2Cl_2 (5 ml) was added to a solution of (*S*)-(+)-[1-(4-methylphenyl)-*N*-(4-biphenyl)methyliden]ethylamine (0.100 g, 0.34 mmol) in CH_2Cl_2 (10 ml). The solution was stirred for 24 h to give an orange precipitate. The solid was

filtered off, dissolved in DMF, and the solution was slowly evaporated. After a few days, orange crystals were collected. Yield 23%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank Dr Angel Mendoza for collecting the crystal data and Conahcyt for financial support (Fellowship 368610).

References

- Al-Jibori, S. A., Hameed, W. J., Al-Hayaly, L. J., Basak-Modi, S. & Hogarth, G. (2015). Inorg. Chem. Commun. 62, 91-93.
- Cattalini, L. & Martelli, M. (1969). J. Am. Chem. Soc. 91, 312-316.
- Decken, A., Pisegna, G. L., Vogels, C. M. & Westcott, S. A. (2000). Acta Cryst. C56, 1071-1072.
- Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Grishin, Y. K., Razmyslova, E. D., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2003). Private communication (refcode: TUWKEB). CCDC, Cambridge, England.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Ha, K. (2020). Z. Kristallogr. 235, 629-630.
- Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046-2067.
- Jones, T. C., Nielson, A. J. & Rickard, C. E. (1984). Aust. J. Chem. 37, 2179-2192
- Karami, K., Alinaghi, M., Amirghofran, Z. & Lipkowski, J. (2018). Inorg. Chim. Acta, 471, 797-807.
- Karami, K., Kharat, M. H., Rizzoli, C. & Lipkowski, J. (2013). J. Organomet. Chem. 728, 16-22.
- Kuz'mina, L. G., Struchkov, Y. T., Dunina, V. V., Zalevskaya, O. A. & Potapov, V. M. (1987). Zh. Obshch. Khim. 57, 599-609.
- Martin, C. D., Appoh, F. E., Vogels, C. M., Decken, A. & Westcott, S. A. (2008). Anal. Sci. X-ray Struct. Anal. Online, 24, x223-x224. Müller, T. E. & Beller, M. (1998). Chem. Rev. 98, 675-704.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-
- 259. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[PdCl_2(C_9H_{13}N)_2]$
M _r	447.71
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.5385 (2), 16.7263 (8), 19.0096 (11)
$V(Å^3)$	2078.99 (17)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.15
Crystal size (mm)	$0.58 \times 0.38 \times 0.14$
Data collection	
Diffractometer	Xcalibur, Atlas, Gemini
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.722, 0.915
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	45575, 7907, 5561
R _{int}	0.061
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.769
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.095, 1.05
No. of reflections	7907
No. of parameters	212
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.62, -0.64
Absolute structure	Flack x determined using 1800 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al. 2013)
Absolute structure parameter	-0.032 (18)
parameter	

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXD (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Ryabov, A. D. (1990). Chem. Rev. 90, 403-424.

- Sabater, S., Mata, J. A. & Peris, E. (2013). Organometallics, 32, 1112-1120
- Seligson, A. L. & Trogler, W. C. (1991). J. Am. Chem. Soc. 113, 2520-2527.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.
- Sui-Seng, C. & Zargarian, D. (2003). Acta Cryst. E59, m957-m958.
- Vázquez, J., Bernès, S., Hernández, G., Aguilar, H. & Gutiérrez, R. (2006). Acta Cryst. E62, m502-m504.
- Widenhoefer, R. A. & Buchwald, S. L. (1996). Organometallics, 15, 3534-3542.

full crystallographic data

IUCrData (2024). 9, x240036 [https://doi.org/10.1107/S2414314624000361]

trans-Dichloridobis[(S)-(-)-1-(4-methylphenyl)ethylamine- κN]palladium(II)

Guadalupe Hernández Téllez, Gloria E. Moreno Morales, Pankaj Sharma, Rodary Gonzalez and Bertin Anzaldo

 $D_{\rm x} = 1.430 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.3 - 27.1^{\circ}$

 $\mu = 1.15 \text{ mm}^{-1}$ T = 293 K

Block, yellow

 $0.58 \times 0.38 \times 0.14 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7901 reflections

trans-Dichloridobis[(*S*)-(–)-1-(4-methylphenyl)ethylamine-*k*N[palladium(II)

 $[PdCl_2(C_9H_{13}N)_2]$ $M_r = 447.71$ Orthorhombic, $P2_12_12_1$ a = 6.5385 (2) Å *b* = 16.7263 (8) Å *c* = 19.0096 (11) Å $V = 2078.99 (17) \text{ Å}^3$ Z = 4F(000) = 912

```
Data collection
```

Xcalibur, Atlas, Gemini 7907 independent reflections diffractometer 5561 reflections with $I > 2\sigma(I)$ Detector resolution: 10.5564 pixels mm⁻¹ $R_{\rm int} = 0.061$ $\theta_{\text{max}} = 33.1^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$ ω scans $h = -10 \rightarrow 10$ Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015) $k = -25 \rightarrow 25$ $T_{\rm min} = 0.722, T_{\rm max} = 0.915$ $l = -29 \rightarrow 29$ 45575 measured reflections Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0333P)^2 + 0.5029P]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.095$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.05	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
7907 reflections	$\Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$
212 parameters	Absolute structure: Flack x determined using
0 restraints	1800 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
Hydrogen site location: inferred from	al., 2013)
neighbouring sites	Absolute structure parameter: -0.032 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms attached to carbon and nitrogen atoms were positioned with idealized geometry and constrained to ride on their parent atoms, and were refined isotropically using a riding model.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pd1	0.43881 (5)	0.37662 (2)	0.46621 (2)	0.04528 (10)	
Cl1	0.72228 (19)	0.43738 (10)	0.51427 (9)	0.0786 (5)	
Cl2	0.14917 (17)	0.31631 (8)	0.42362 (8)	0.0618 (4)	
C1	0.2846 (8)	0.5452 (3)	0.4715 (3)	0.0574 (12)	
H1	0.427445	0.550708	0.456647	0.069*	
C2	0.2394 (8)	0.6133 (3)	0.5206 (3)	0.0529 (11)	
C3	0.3892 (9)	0.6670 (3)	0.5384 (4)	0.0700 (15)	
H3	0.519174	0.660828	0.519264	0.084*	
C4	0.3531 (12)	0.7299 (4)	0.5837 (4)	0.082 (2)	
H4	0.458570	0.764935	0.594914	0.099*	
C5	0.1610 (12)	0.7412 (3)	0.6126 (3)	0.0743 (17)	
C6	0.0115 (9)	0.6873 (4)	0.5960 (3)	0.0717 (16)	
H6	-0.117513	0.692942	0.616073	0.086*	
C7	0.0475 (9)	0.6243 (3)	0.5499 (3)	0.0658 (13)	
H7	-0.058080	0.589240	0.538736	0.079*	
C8	0.1214 (15)	0.8108 (4)	0.6624 (4)	0.109 (3)	
H8A	-0.020601	0.811728	0.675214	0.163*	
H8B	0.156602	0.860098	0.639512	0.163*	
H8C	0.203350	0.804591	0.703986	0.163*	
C9	0.1548 (13)	0.5439 (4)	0.4054 (3)	0.089 (2)	
H9A	0.194650	0.499443	0.376566	0.133*	
H9B	0.174363	0.592758	0.379829	0.133*	
H9C	0.013344	0.538613	0.418088	0.133*	
C10	0.6754 (7)	0.1854 (3)	0.3317 (3)	0.0538 (12)	
C11	0.5455 (8)	0.1214 (4)	0.3346 (3)	0.0696 (14)	
H11	0.410391	0.129536	0.348156	0.084*	
C12	0.6089 (12)	0.0453 (4)	0.3181 (4)	0.079 (2)	
H12	0.515250	0.003482	0.318976	0.094*	
C13	0.8098 (12)	0.0302 (4)	0.3004 (3)	0.0724 (17)	
C14	0.9381 (11)	0.0941 (4)	0.2986 (4)	0.086 (2)	
H14	1.074562	0.085587	0.287024	0.103*	
C15	0.8753 (8)	0.1713 (4)	0.3133 (4)	0.0789 (19)	
H15	0.967897	0.213352	0.310781	0.095*	
C16	0.8851 (15)	-0.0534 (4)	0.2830 (4)	0.111 (3)	
H16A	0.825566	-0.090992	0.315120	0.166*	
H16B	1.031357	-0.055076	0.286979	0.166*	
H16C	0.845891	-0.066826	0.235748	0.166*	
C17	0.5914 (7)	0.2677 (3)	0.3488 (3)	0.0563 (12)	
H17	0.444373	0.266492	0.338874	0.068*	
C18	0.6817 (12)	0.3357 (4)	0.3063 (4)	0.0852 (19)	
H18A	0.624801	0.385508	0.322108	0.128*	
H18B	0.649956	0.328210	0.257422	0.128*	
H18C	0.827385	0.336610	0.312394	0.128*	
N1	0.2654 (6)	0.4663 (2)	0.5077 (2)	0.0496 (9)	
H1A	0.134790	0.451351	0.506492	0.060*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

H1B	0.299856	0.472545	0.552656	0.060*
N2	0.6156 (6)	0.2865 (2)	0.4253 (2)	0.0532 (10)
H2A	0.746127	0.298909	0.432873	0.064*
H2B	0.589351	0.242141	0.449531	0.064*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.03448 (13)	0.05194 (17)	0.04942 (17)	0.00021 (15)	-0.00095 (15)	-0.00264 (18)
Cl1	0.0396 (6)	0.1033 (11)	0.0927 (12)	-0.0090 (7)	-0.0076 (6)	-0.0358 (9)
Cl2	0.0343 (5)	0.0663 (8)	0.0849 (10)	-0.0047 (5)	-0.0015 (6)	-0.0168 (7)
C1	0.065 (3)	0.053 (3)	0.054 (3)	0.001 (2)	0.008 (3)	0.001 (3)
C2	0.062 (3)	0.046 (3)	0.051 (3)	-0.001 (2)	0.003 (2)	0.001 (2)
C3	0.075 (4)	0.061 (3)	0.074 (4)	-0.011 (3)	0.010 (3)	0.003 (3)
C4	0.107 (5)	0.061 (4)	0.080 (5)	-0.023 (4)	-0.002 (4)	-0.005 (3)
C5	0.110 (5)	0.053 (3)	0.060 (4)	0.004 (3)	-0.004 (4)	-0.003 (3)
C6	0.074 (4)	0.076 (4)	0.064 (4)	0.014 (3)	0.004 (3)	-0.005 (3)
C7	0.070 (3)	0.060 (3)	0.067 (3)	0.001 (3)	-0.009 (3)	-0.007 (3)
C8	0.169 (9)	0.079 (4)	0.079 (5)	0.006 (5)	0.005 (5)	-0.027 (4)
C9	0.139 (6)	0.073 (4)	0.054 (4)	0.022 (4)	-0.004 (4)	-0.007 (3)
C10	0.042 (2)	0.073 (3)	0.046 (3)	0.005 (2)	-0.002 (2)	-0.006 (3)
C11	0.055 (3)	0.084 (4)	0.070 (3)	0.004 (4)	0.008 (3)	0.017 (3)
C12	0.088 (5)	0.067 (4)	0.081 (5)	-0.002 (3)	0.004 (4)	0.013 (3)
C13	0.096 (5)	0.075 (4)	0.046 (3)	0.013 (4)	0.003 (3)	-0.002(3)
C14	0.055 (3)	0.108 (5)	0.095 (5)	0.015 (4)	0.011 (4)	-0.035 (4)
C15	0.048 (3)	0.091 (4)	0.098 (5)	0.000 (3)	0.011 (3)	-0.036 (4)
C16	0.168 (9)	0.085 (5)	0.079 (5)	0.036 (6)	0.016 (5)	-0.001 (4)
C17	0.042 (3)	0.075 (3)	0.051 (3)	0.007 (2)	-0.005 (2)	-0.006 (3)
C18	0.101 (5)	0.080 (4)	0.075 (5)	0.009 (4)	0.005 (4)	0.008 (4)
N1	0.049 (2)	0.051 (2)	0.049 (2)	0.0013 (17)	0.0052 (18)	-0.0033 (18)
N2	0.0399 (19)	0.065 (2)	0.055 (3)	0.0106 (18)	0.0000 (17)	-0.005 (2)

Geometric parameters (Å, °)

Pd1—Cl1	2.3028 (13)	C10—C11	1.368 (7)
Pd1—Cl2	2.2933 (12)	C10—C15	1.373 (7)
Pd1—N1	2.039 (4)	C10—C17	1.517 (7)
Pd1—N2	2.053 (4)	C11—H11	0.9300
С1—Н1	0.9800	C11—C12	1.374 (8)
C1—C2	1.502 (7)	C12—H12	0.9300
C1—C9	1.516 (9)	C12—C13	1.379 (10)
C1—N1	1.494 (6)	C13—C14	1.360 (9)
C2—C3	1.371 (7)	C13—C16	1.518 (9)
C2—C7	1.385 (7)	C14—H14	0.9300
С3—Н3	0.9300	C14—C15	1.382 (8)
C3—C4	1.381 (8)	C15—H15	0.9300
C4—H4	0.9300	C16—H16A	0.9600
C4—C5	1.383 (10)	C16—H16B	0.9600

C5 C6	1 266 (0)	C16 H16C	0.0600
C3—C0	1.500 (9)		0.9000
C5—C8	1.524 (8)		0.9800
С6—Н6	0.9300	C17—C18	1.515 (8)
C6—C7	1.391 (8)	C17—N2	1.496 (7)
С7—Н7	0.9300	C18—H18A	0.9600
C8—H8A	0.9600	C18—H18B	0.9600
C8—H8B	0.9600	C18—H18C	0.9600
C8—H8C	0.9600	N1—H1A	0.8900
С9—Н9А	0.9600	N1—H1B	0.8900
С9—Н9В	0.9600	N2—H2A	0.8900
С9—Н9С	0.9600	N2—H2B	0.8900
C12—Pd1—C11	177 22 (6)	C10-C11-H11	110 1
N1 Pd1 Cl1	88 25 (12)	C_{10} C_{11} C_{12}	121.0 (6)
N1 D41 C12	00.25(12)	$C_{10} = C_{11} = C_{12}$	121.9 (0)
	90.03 (12)		119.1
NI—Pui—N2	1/9.39 (18)		119.0
N2—Pd1—C11	91.21 (12)	C11—C12—C13	120.9 (7)
N2—Pd1—Cl2	90.48 (12)	C13—C12—H12	119.6
C2—C1—H1	107.2	C12—C13—C16	122.1 (7)
C2—C1—C9	114.6 (4)	C14—C13—C12	116.7 (6)
С9—С1—Н1	107.2	C14—C13—C16	121.2 (7)
N1-C1-H1	107.2	C13—C14—H14	118.5
N1—C1—C2	111.5 (4)	C13—C14—C15	123.1 (6)
N1—C1—C9	108.8 (5)	C15—C14—H14	118.5
C3—C2—C1	120.6 (5)	C10—C15—C14	119.7 (6)
C3—C2—C7	117.5 (5)	C10-C15-H15	120.2
C7-C2-C1	122.0(5)	C14—C15—H15	120.2
$C_2 - C_3 - H_3$	119.0	C_{13} C_{16} H_{16A}	109.5
$C_2 = C_3 = C_4$	122.1 (6)	C13 C16 H16R	109.5
$C_2 = C_3 = C_4$	122.1 (0)	C12 C16 U16C	109.5
C4 - C3 - H3	119.0		109.5
C3-C4-H4	119.8	HI6A—CI6—HI6B	109.5
C3—C4—C5	120.5 (6)	H16A—C16—H16C	109.5
C5—C4—H4	119.8	H16B—C16—H16C	109.5
C4—C5—C8	120.3 (7)	С10—С17—Н17	107.2
C6—C5—C4	117.9 (6)	C18—C17—C10	115.2 (5)
C6—C5—C8	121.7 (7)	C18—C17—H17	107.2
С5—С6—Н6	119.2	N2—C17—C10	111.1 (4)
C5—C6—C7	121.6 (6)	N2—C17—H17	107.2
С7—С6—Н6	119.2	N2-C17-C18	108.6 (5)
C2—C7—C6	120.5 (5)	C17—C18—H18A	109.5
С2—С7—Н7	119.8	C17—C18—H18B	109.5
С6—С7—Н7	119.8	C17—C18—H18C	109.5
C5-C8-H8A	109.5	H18A - C18 - H18B	109.5
$C_5 - C_8 - H_{8B}$	109.5	H18A - C18 - H18C	109.5
$C_5 C_8 H_{8C}$	109.5	H18B C18 H19C	109.5
	109.5	DA1 N1 U1A	109.5
	109.5		100.5
	109.5		108.5
H8B—C8—H8C	109.5	CI—NI—Pd1	115.2 (3)

С1—С9—Н9А	109.5	C1—N1—H1A	108.5
С1—С9—Н9В	109.5	C1—N1—H1B	108.5
С1—С9—Н9С	109.5	H1A—N1—H1B	107.5
H9A—C9—H9B	109.5	Pd1—N2—H2A	107.9
Н9А—С9—Н9С	109.5	Pd1—N2—H2B	107.9
H9B—C9—H9C	109.5	C17—N2—Pd1	117.6 (3)
C11—C10—C15	117.8 (6)	C17—N2—H2A	107.9
C11—C10—C17	118.5 (5)	C17—N2—H2B	107.9
C15—C10—C17	123.7 (5)	H2A—N2—H2B	107.2
C1—C2—C3—C4	-179.6 (6)	C11—C10—C15—C14	0.0 (10)
C1—C2—C7—C6	179.1 (5)	C11—C10—C17—C18	-144.6 (6)
C2-C1-N1-Pd1	-153.2 (3)	C11—C10—C17—N2	91.3 (6)
C2—C3—C4—C5	-0.5 (10)	C11—C12—C13—C14	-1.4 (11)
C3—C2—C7—C6	-0.6 (8)	C11—C12—C13—C16	179.1 (6)
C3—C4—C5—C6	1.4 (11)	C12—C13—C14—C15	-0.3 (11)
C3—C4—C5—C8	-179.8 (6)	C13-C14-C15-C10	1.0 (12)
C4—C5—C6—C7	-1.9 (10)	C15-C10-C11-C12	-1.7 (9)
C5—C6—C7—C2	1.5 (9)	C15-C10-C17-C18	35.4 (8)
C7—C2—C3—C4	0.1 (9)	C15-C10-C17-N2	-88.7 (7)
C8—C5—C6—C7	179.3 (6)	C16—C13—C14—C15	179.2 (7)
C9—C1—C2—C3	-120.9 (6)	C17—C10—C11—C12	178.3 (6)
C9—C1—C2—C7	59.5 (7)	C17—C10—C15—C14	180.0 (6)
C9—C1—N1—Pd1	79.5 (5)	C18—C17—N2—Pd1	70.7 (5)
C10-C11-C12-C13	2.4 (10)	N1—C1—C2—C3	115.0 (5)
C10-C17-N2-Pd1	-161.6 (3)	N1—C1—C2—C7	-64.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1…Cl1	0.98	2.92	3.479 (5)	117
C17—H17···Cl2	0.98	2.65	3.323 (5)	126
N1—H1A···Cl1 ⁱ	0.89	2.71	3.586 (4)	168
N2—H2A····Cl2 ⁱⁱ	0.89	2.66	3.524 (4)	165
N2—H2B····Cl2 ⁱⁱⁱ	0.89	2.63	3.355 (4)	139

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*+1/2, -*y*+1/2, -*z*+1.