

ISSN 2414-3146

Received 3 January 2024 Accepted 11 January 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; high-pressure sintering; intermetallic; Ti₄Ni₂C phase.

CCDC reference: 2324933

Structural data: full structural data are available from iucrdata.iucr.org

data reports

Crystal structure of Ti₄Ni₂C

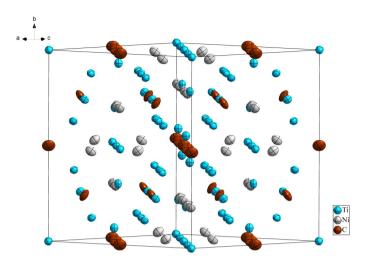
Huizi Liu,^a Xinyu Liang,^a Yibo Liu,^a Changzeng Fan,^{a,b}* Bin Wen^a and Lifeng Zhang^c

^aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, ^bHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China, and ^cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China. *Correspondence e-mail: chzfan@ysu.edu.cn

Single crystals of the intermetallic phase with composition Ti_4Ni_2C were serendipitously obtained by high-pressure sintering of a mixture with initial chemical composition Ti_2Ni . The Ti_4Ni_2C phase crystallizes in the $Fd\overline{3}m$ space group and can be considered as a partially filled Ti_2Ni structure with the C atom occupying an octahedral void. Ti_4Ni_2C is isotypic with Ti_4Ni_2O , Nb_4Ni_2C and Ta_4Ni_2C , all of which were studied previously by means of powder diffraction.

Structure description

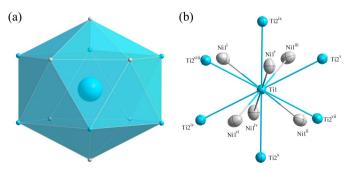
A large number of intermetallic phases can be grouped into classes of compounds based on structural or chemical similarities. For example, Mueller & Knott (1963) investigated the related crystal structures of Ti₂Cu, Ti₂Ni, Ti₄Ni₂O and Ti₄Cu₂O by X-ray and neutron powder diffraction. They determined that the Ti₂Ni phase crystallizes in the $Fd\overline{3}m$ space group, with cell parameter a = 11.3193 (2) Å and with 96 atoms per unit cell; the Ti₄Ni₂O (Ti₄Cu₂O) phase also crystallizes in the $Fd\overline{3}m$ space group, with cell parameter a =11.3279 (1) Å [a = 11.4353 (2) Å] and with 112 atoms per unit cell. The latter phases can be considered as partially filled Ti₂Ni variants with the additional oxygen atom occupying an octahedral position. Holleck & Thummler (1967) studied a series of carbides, nitrides and oxides in ternary systems and reported that Nb₄Ni₂C (a = 11.64 Å) and Ta₄Ni₂C (a =11.61 Å) crystallize in the same partially filled Ti₂Ni structure. Sadrnezhaad *et al.* (2009) and Shigeo *et al.* (1993) have confirmed the existence of the Ti₄Ni₂C phase. However, no detailed study has been performed so far with respect to the determination of its crystal structure.


In the present study, the crystal structure model of Ti_4Ni_2C has been refined on the basis of single-crystal X-ray diffraction data. The lattice parameter *a* is similar to those of previously reported isotypic phases (see above), and its chemical composition was refined to be exactly Ti_4Ni_2C in accordance with the EDX results (see Fig. S1 and Table S1 in the supporting information). Carbon present in the crystal structure most likely originated from the graphite crucible used during high pressure sintering (HPS).

Ti₄Ni₂C crystallizes isotypically with other Ti₄Ni₂X compounds (X = C, N, O) with a partially filled Ti₂Ni structure in space group type $Fd\overline{3}m$. Fig. 1 shows the distribution of the atoms in the unit cell of Ti₄Ni₂C. The environments of the Ti1 and C1 sites are shown in Figs. 2 and 3, respectively. The Ti1 atom is situated at a position with site symmetry $.\overline{3}m$ (multiplicity 16, Wyckoff letter c). It is surrounded by six Ti2 atoms (2.mm, 48f) and six Ni1 atoms (.3m; 32e), defining the center of an icosahedron. The C1 atom occupies a position with site symmetry $.\overline{3}m$ (16d) and centers an octahedron defined by six Ti2 atoms. The shortest Ti1...Ti2 separation is 2.9415 (9) Å and the shortest Ti1...Ni1 separation is 2.4750 (4) Å; the C1-Ti2 bond length is 2.1127 (4) Å.

Synthesis and crystallization

The high-purity elements Ti (indicated purity 99.5%; 0.6291 g) and Ni (indicated purity 99.9%; 0.3869 g) were mixed uniformly in the stoichiometric ratio 2:1 and thoroughly ground in an agate mortar. The blended powders were then placed in a cemented carbide grinding mould of 5 mm diameter, and pressed into a tablet at about 4 MPa for 1 min. A


Figure 1

The crystal structure of Ti_4Ni_2C (one unit cell), with displacement ellipsoids drawn at the 99% probability level.

cylindrical block was obtained without deformations or cracks. Details of the high-pressure sintering experiment using a sixanvil high-temperature high-pressure apparatus can be found elsewhere (Liu & Fan, 2018). The samples were pressurized up to 6 GPa and heated to 1573 K for 40 min, and then rapidly cooled to room temperature by turning off the furnace power. A piece of a single-crystal ($0.06 \times 0.06 \times 0.04 \text{ mm}^3$) was selected and mounted on a glass fibre for SXRD measurements.

Refinement

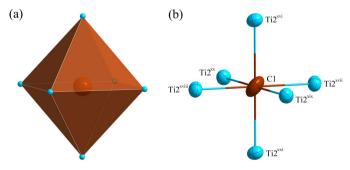
Crystal data, data collection and structure refinement details are summarized in Table 1. For better comparison, the labeling scheme and atomic coordinates of Ti_4Ni_2C were adapted from Nb_4Ni_2C and Ta_4Ni_2C (Holleck & Thuemmler, 1967). The maximum and minimum residual electron densities in the final difference map are located 1.10 Å from site Ni1 and 0.17 Å from Ti2, respectively.

Figure 2

(a) The icosahedron formed around the Ti1 atom at the 16 *c* site; (*b*) the environment of the Ti1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) $x - \frac{1}{4}$, -y, $z - \frac{1}{4}$; (ii) $-x + \frac{1}{4}$, y, $-z + \frac{1}{4}$; (iii) -x, $y - \frac{1}{4}$, $-z - \frac{1}{4}$; (iv) $x - \frac{1}{4}$, $y - \frac{1}{4}$, -z; (v) $-x + \frac{1}{4}$, $-y + \frac{1}{4}$, z; (vi) x, $-y + \frac{1}{4}$, $-z + \frac{1}{4}$; (vii) -z, $x - \frac{1}{4}$, $y - \frac{1}{4}$; (viii) z, $-x + \frac{1}{4}$, $-y + \frac{1}{4}$; (ix) $y - \frac{1}{4}$, -z, $x - \frac{1}{4}$; (vi) -z, $x - \frac{1}{4}$, $-z + \frac{1}{4}$; (iii) -z, $x - \frac{1}{4}$, $y - \frac{1}{4}$; (viii) z, $-x + \frac{1}{4}$, $-y + \frac{1}{4}$; (ix) $y - \frac{1}{4}$, -z, $x - \frac{1}{4}$; (z) $-y + \frac{1}{4}$, z, $-x + \frac{1}{4}$.]

Table 1	
Experimental	details.

•	
Crystal data	
Chemical formula	Ti ₄ Ni ₂ C
$M_{ m r}$	320.87
Crystal system, space group	Cubic, $Fd\overline{3}m$
Temperature (K)	296
a (Å)	11.3235 (8)
$V(Å^3)$	1451.9 (3)
Ζ	16
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	18.28
Crystal size (mm)	$0.06 \times 0.06 \times 0.04$
Data collection	
Diffractometer	Bruker D8 Venture Photon 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.520, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12231, 105, 97
R _{int}	0.091
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.051, 1.22
No. of reflections	105
No. of parameters	12
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.48, -0.70


Computer programs: APEX3 (Bruker, 2015), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2017) and publCIF (Westrip, 2010).

Acknowledgements

The authors are indebted to Dr Qiang Ren from the High steel center of Yanshan University for assistance in performing the SEM/EDX measurements.

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231; grant No. 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing

(a) The octahedron formed around the C1 atom at the 16 *d* site; (b) the environment of the C1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: $(xvi) -y + \frac{1}{2}, -z + \frac{1}{2}, -x + 1;$ (xvii) $x, y + \frac{1}{2}, z + \frac{1}{2};$ (xviii) $-x + 1, -y + \frac{1}{2}, -z + \frac{1}{2};$ (xix) $z + \frac{1}{2}, x, y + \frac{1}{2};$ (xx) $-z + \frac{1}{2}, -x + 1, -y + \frac{1}{2};$ (xxi) $y + \frac{1}{2}, z + \frac{1}{2};$ x.] Metal Product Technology and Performance (grant No. 22567609H).

References

- Brandenburg, K. & Putz, H. (2017). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.
- Holleck, H. & Thummler, F. (1967). Monatsh. Chem. 98, 133-134.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.

- Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.
- Mueller, M. H. & Knott, H. W. (1963). *Trans. Metall. Soc. AIME*, **227**, 674–677.
- Sadrnezhaad, S. K., Ahmadi, E. & Malekzadeh, M. (2009). *Mater. Sci. Technol.* **25**, 699–706.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shigeo, K., Yasuyuki, S. & Masafumi, S. (1993). *Res. Rep. Fac. Eng. Mie Univ*, **18**, 7–13.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2024). 9, x240043 [https://doi.org/10.1107/S2414314624000439]

Crystal structure of Ti₄Ni₂C

Huizi Liu, Xinyu Liang, Yibo Liu, Changzeng Fan, Bin Wen and Lifeng Zhang

Tetratitanium dinickel carbide

Crystal data	
Ti ₄ Ni ₂ C $M_r = 320.87$ Cubic, $Fd\overline{3}m$ a = 11.3235 (8) Å V = 1451.9 (3) Å ³ Z = 16 F(000) = 2400 $D_x = 5.875$ Mg m ⁻³	Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3145 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 18.28 \text{ mm}^{-1}$ T = 296 K Lump, gray $0.06 \times 0.06 \times 0.04 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 100 CMOS diffractometer phi and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.520, T_{\max} = 0.746$ 12231 measured reflections	105 independent reflections 97 reflections with $I > 2\sigma(I)$ $R_{int} = 0.091$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.051$ S = 1.22 105 reflections 12 parameters	0 restraints $w = 1/[\sigma^2(F_o^2) + (0.0226P)^2 + 31.699P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.70 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ti1	0.000000	0.000000	0.000000	0.0054 (5)
Ni1	0.21179 (6)	0.21179 (6)	0.21179 (6)	0.0080 (3)
Ti2	0.44034 (11)	0.125000	0.125000	0.0052 (3)

data reports

C1	0.500000	0.500	000	0.500000	0.010 (3)	
Atomic d	displacement param	neters $(Å^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ti1	0.0054 (5)	0.0054 (5)	0.0054 (5)	0.0004 (5)	0.0004 (5)	0.0004 (5)
Ni1	0.0080 (3)	0.0080 (3)	0.0080 (3)	0.0011 (2)	0.0011 (2)	0.0011 (2)
Ti2	0.0063 (6)	0.0046 (4)	0.0046 (4)	0.000	0.000	-0.0005 (4)
C1	0.010 (3)	0.010 (3)	0.010 (3)	-0.003 (3)	-0.003 (3)	-0.003 (3)
Geometi	ric parameters (Å,	<i>°)</i>				
Ti1—Ni	i1 ⁱ	2.4750 (4)	Ni1—Ti2 ^{xiii}	, ,	2.6249 (9)
Ti1—Ni	i1 ⁱⁱ	2.4750 (4		Ni1—Ni1 ^v		2.7797 (18)
Гі1—Ni		2.4750 (4	·	Ni1—Ni1 ^{vi}		2.7797 (18)
Ti1—Ni		2.4750 (4		Ni1—Ni1 ⁱⁱ		2.7797 (18)
Ti1—Ni		2.4750 (4		Ni1—Ti2 ^{xiv}		2.9376 (11)
Гі1—Ni		2.4750 (4		Ni1—Ti2 ^{xv}		2.9376 (11)
Гі1—Ті		2.9415 (9		Ni1—Ti2		2.9376 (11)
Гі1—Ті	2 ^{viii}	2.9415 (9		Ti2—C1 ^{xvi}		2.1127 (4)
Гі1—Ті	2 ^{ix}	2.9415 (9		Ti2—C1 ^{xvii}		2.1127 (4)
Гі1—Ті	2 ^{iv}	2.9415 (9		Ti2—Ti2 ^{xviii}		2.9571 (17)
Гі1—Ті	2 ^v	2.9415 (9		Ti2—Ti2 ^{xix}		2.9571 (17)
Гі1—Ті	2 ^x	2.9415 (9)	Ti2—Ti2 ^{xx}		2.9571 (17)
Ni1—Ti	i2 ^{xi}	2.6249 (9)	Ti2—Ti2 ^{xxi}	-	2.9571 (17)
Ni1—Ti	i2 ^{xii}	2.6249 (9)			
Ni1 ⁱ —T	ï1—Ni1 ⁱⁱ	180.00 (4)	Ti2 ^{xiii} —Ni1—Ti2 ^{xiv}	(65.437 (12)
Ni1 ⁱ —T	ï1—Ni1 ⁱⁱⁱ	68.33 (4)		Ni1 ^v —Ni1—Ti2 ^{xiv}	(61.76 (2)
Ni1 ⁱⁱ —T	Fi1—Ni1 ⁱⁱⁱ	111.67 (4)	Ni1 ^{vi} —Ni1—Ti2 ^{xiv}		112.73 (2)
Ni1 ⁱ —T	ïi1—Ni1 ^{iv}	68.33 (4)		Ni1 ⁱⁱ —Ni1—Ti2 ^{xiv}		112.73 (2)
Ni1 ⁱⁱ —T	Fi1—Ni1 ^{iv}	111.67 (4)	Ti1 ^{vi} —Ni1—Ti2 ^{xv}	(65.185 (5)
Ni1 ⁱⁱⁱ —7	Гі1—Ni1 ^{iv}	68.33 (4)		Ti1 ^v —Ni1—Ti2 ^{xv}	(65.185 (5)
Ni1 ⁱ —T	ïi1—Ni1 ^v	111.67 (4)	Ti1 ⁱⁱ —Ni1—Ti2 ^{xv}		166.08 (5)
Ni1 ⁱⁱ —T	Ti1—Ni1 ^v	68.33 (4)		Ti2 ^{xi} —Ni1—Ti2 ^{xv}		65.437 (12)
Nil ⁱⁱⁱ —7	Гі1—Ni1 ^v	111.67 (4)	Ti2 ^{xii} —Ni1—Ti2 ^{xv}		123.55 (5)
Ni1 ^{iv} —7	Гі1—Ni1 ^v	180.00 (6)	Ti2 ^{xiii} —Ni1—Ti2 ^{xv}	(65.437 (12)
Ni1 ⁱ —T	ï1—Ni1 ^{vi}	111.67 (4)	Ni1 ^v —Ni1—Ti2 ^{xv}		112.73 (2)
	fi1—Ni1 ^{vi}	68.33 (4)		Ni1 ^{vi} —Ni1—Ti2 ^{xv}		112.73 (2)
	Гі1—Ni1 ^{vi}	180.0		Ni1 ⁱⁱ —Ni1—Ti2 ^{xv}		61.76 (2)
	Гі1—Ni1 ^{vi}	111.67 (4)	Ti2 ^{xiv} —Ni1—Ti2 ^{xv}	-	118.526 (10)
	Fi1—Ni1 ^{vi}	68.33 (4)		Ti1 ^{vi} —Ni1—Ti2	-	166.08 (5)
	i1—Ti2 ^{vii}	122.80 (3)	Ti1 ^v —Ni1—Ti2		65.185 (5)
	Ti1—Ti2 ^{vii}	57.20 (3)		Ti1 ⁱⁱ —Ni1—Ti2		65.185 (5)
	Γi1—Ti2 ^{vii}	65.020 (1		Ti2 ^{xi} —Ni1—Ti2		65.437 (12)
	Γi1—Ti2 ^{vii}	65.020 (1		Ti2 ^{xii} —Ni1—Ti2		65.437 (12)
	Ti1—Ti2 ^{vii}	114.980 (Ti2 ^{xiii} —Ni1—Ti2		123.55 (5)
Ni1 ^{vi} —7	Γi1—Ti2 ^{vii}	114.980 (15)	Ni1 ^v —Ni1—Ti2	-	112.73 (2)

	57.20 (2)		(1,7)
Ni1 ⁱ —Ti1—Ti2 ^{viii}	57.20 (3)	Ni1 ^{vi} —Ni1—Ti2	61.76 (2)
Ni1 ⁱⁱ —Ti1—Ti2 ^{viii}	122.80 (3)	Ni1 ⁱⁱ —Ni1—Ti2	112.73 (2)
Ni1 ⁱⁱⁱ —Ti1—Ti2 ^{viii}	114.980 (15)	Ti2 ^{xiv} —Ni1—Ti2	118.525 (10)
Ni1 ^{iv} —Ti1—Ti2 ^{viii}	114.980 (15)	Ti2 ^{xv} —Ni1—Ti2	118.525 (10)
Ni1 ^v —Ti1—Ti2 ^{viii}	65.020 (15)	$C1^{xvi}$ $Ti2$ $C1^{xvii}$	142.70 (6)
Ni1 ^{vi} —Ti1—Ti2 ^{viii}	65.020 (15)	C1 ^{xvi} —Ti2—Ni1 ^{xxii}	88.304 (12)
Ti2 ^{vii} —Ti1—Ti2 ^{viii}	180.00 (3)	C1 ^{xvii} —Ti2—Ni1 ^{xxii}	88.304 (12)
Ni1 ⁱ —Ti1—Ti2 ^{ix}	65.020 (15)	C1 ^{xvi} —Ti2—Ni1 ^{xxiii}	88.304 (12)
Ni1 ⁱⁱ —Ti1—Ti2 ^{ix}	114.980 (15)	C1 ^{xvii} —Ti2—Ni1 ^{xxiii}	88.304 (12)
Ni1 ⁱⁱⁱ —Ti1—Ti2 ^{ix}	65.020 (15)	Ni1 ^{xxii} —Ti2—Ni1 ^{xxiii}	169.38 (6)
Ni1 ^{iv} —Ti1—Ti2 ^{ix}	122.80 (3)	C1 ^{xvi} —Ti2—Ni1 ^{vi}	136.89 (5)
Ni1 ^v —Ti1—Ti2 ^{ix}	57.20 (3)	C1 ^{xvii} —Ti2—Ni1 ^{vi}	80.41 (3)
Ni1 ^{vi} —Ti1—Ti2 ^{ix}	114.980 (15)	Ni1 ^{xxii} —Ti2—Ni1 ^{vi}	94.68 (3)
Ti2 ^{vii} —Ti1—Ti2 ^{ix}	118.270 (7)	Ni1 ^{xxiii} —Ti2—Ni1 ^{vi}	94.68 (3)
Ti2 ^{viii} —Ti1—Ti2 ^{ix}	61.730 (7)	C1 ^{xvi} —Ti2—Ni1	80.41 (3)
Ni1 ⁱ —Ti1—Ti2 ^{iv}	65.020 (15)	C1 ^{xvii} —Ti2—Ni1	136.89 (5)
Ni1 ⁱⁱ —Ti1—Ti2 ^{iv}	114.980 (15)	Ni1 ^{xxii} —Ti2—Ni1	94.68 (3)
Ni1 ⁱⁱⁱ —Ti1—Ti2 ^{iv}	122.80 (3)	Ni1 ^{xxiii} —Ti2—Ni1	94.68 (3)
Ni1 ^{iv} —Ti1—Ti2 ^{iv}	65.020 (15)	Ni1 ^{vi} —Ti2—Ni1	56.48 (5)
Ni1 ^v —Ti1—Ti2 ^{iv}	114.980 (15)	C1 ^{xvi} —Ti2—Ti1 ⁱⁱ	103.550 (18)
Ni1 ^{vi} —Ti1—Ti2 ^{iv}	57.20 (3)	C1 ^{xvii} —Ti2—Ti1 ⁱⁱ	103.550 (18)
Ti2 ^{vii} —Ti1—Ti2 ^{iv}	118.270 (7)	Ni1 ^{xxii} —Ti2—Ti1 ⁱⁱ	138.19 (4)
Ti2 ^{viii} —Ti1—Ti2 ^{iv}	61.730 (7)	Ni1 ^{xxiii} —Ti2—Ti1 ⁱⁱ	52.426 (19)
Ti2 ^{ix} —Ti1—Ti2 ^{iv}	118.270 (7)	Ni1 ^{vi} —Ti2—Ti1 ⁱⁱ	49.79 (2)
Ni1 ⁱ —Ti1—Ti2 ^v	114.980 (15)	Ni1—Ti2—Ti1 ⁱⁱ	49.79 (2)
Ni1 ⁱⁱ —Ti1—Ti2 ^v	65.020 (15)	C1 ^{xvi} —Ti2—Ti1 ^v	103.550 (18)
Ni1 ⁱⁱⁱ —Ti1—Ti2 ^v	57.20 (3)	C1 ^{xvii} —Ti2—Ti1 ^v	103.550 (18)
Ni1 ^{iv} —Ti1—Ti2 ^v	114.980 (15)	Ni1 ^{xxii} —Ti2—Ti1 ^v	52.426 (19)
Ni1 ^v —Ti1—Ti2 ^v	65.020 (15)	Ni1 ^{xxiii} —Ti2—Ti1 ^v	138.19 (4)
Ni1 ^{vi} —Ti1—Ti2 ^v	122.80 (3)	Ni1 ^{vi} —Ti2—Ti1 ^v	49.79 (2)
Ti2 ^{vii} —Ti1—Ti2 ^v	61.730 (7)	Ni1—Ti2—Ti1 ^v	49.79 (2)
Ti2 ^{viii} —Ti1—Ti2 ^v	118.270 (7)	Ti1 ⁱⁱ —Ti2—Ti1 ^v	85.77 (3)
Ti2 ^{ix} —Ti1—Ti2 ^v	61.730 (7)	C1 ^{xvi} —Ti2—Ti2 ^{xviii}	45.58 (2)
Ti2 ^{iv} —Ti1—Ti2 ^v	180.00 (3)	C1 ^{xvii} —Ti2—Ti2 ^{xviii}	104.34 (3)
Ni1 ⁱ —Ti1—Ti2 ^x	114.980 (15)	Ni1 ^{xxii} —Ti2—Ti2 ^{xviii}	115.62 (3)
Ni1 ⁱⁱ —Ti1—Ti2 ^x	65.020 (15)	Ni1 ^{xxiii} —Ti2—Ti2 ^{xviii}	55.72 (2)
Ni1 ⁱⁱⁱ —Ti1—Ti2 ^x	114.980 (15)	Ni1 ^{vi} —Ti2—Ti2 ^{xviii}	149.263 (5)
Ni1 ^{iv} —Ti1—Ti2 ^x	57.20 (3)	Ni1—Ti2—Ti2 ^{xviii}	112.73 (2)
Ni1 ^v —Ti1—Ti2 ^x	122.80 (3)	Ti1 ⁱⁱ —Ti2—Ti2 ^{xviii}	100.245 (14)
Ni1 ^{vi} —Ti1—Ti2 ^x	65.020 (15)	Ti1 ^v —Ti2—Ti2 ^{xviii}	149.135 (4)
Ti2 ^{vii} —Ti1—Ti2 ^x	61.730 (7)	$C1^{xvi}$ — $Ti2$ — $Ti2^{xix}$	45.58 (2)
Ti2 ^{viii} —Ti1—Ti2 ^x	118.270 (7)	$C1^{xvii}$ — $Ti2$ — $Ti2^{xix}$	104.34 (3)
$Ti2^{ix}$ — $Ti1$ — $Ti2^{x}$	180.0	$Ni1^{xxii}$ — $Ti2$ — $Ti2^{xix}$	55.72 (2)
$Ti2^{iv}$ — $Ti1$ — $Ti2^{x}$	61.730 (7)	$Ni1^{xxiii}$ — $Ti2$ — $Ti2^{xix}$	115.62 (3)
$Ti2^v$ — $Ti1$ — $Ti2^x$	118.270 (7)	Ni1 ^{vi} —Ti2—Ti2 ^{xix}	149.263 (5)
$Ti1^{vi}$ Ni1—Ti1 ^v	107.95 (2)	Ni1—Ti2—Ti2 ^{xix}	112.73 (2)
Ti1 ^{vi} —Ni1—Ti1 ⁱⁱ	107.95 (2)	$Ti1^{ii}$ — $Ti2$ — $Ti2^{xix}$	149.135 (4)
Ti1 ^v —Ni1—Ti1 ⁱⁱ	107.95 (2)	$Ti1^{v} Ti2 Ti2^{xix}$	100.245 (14)
	107.95 (2)	111 112 112	100.273 (17)

Ti1 ^{vi} —Ni1—Ti2 ^{xi}	125.12 (2)	Ti2 ^{xviii} —Ti2—Ti2 ^{xix}	60.0
$\frac{111}{11} = \frac{112}{11}$ $\frac{111}{11} = \frac{112}{11}$	70.38 (3)	$\frac{112}{112} - \frac{112}{112} - \frac{112}{112}$	104.34 (3)
$Ti1^{ii} - Ni1 - Ti2^{xi}$	125.12 (2)	C1 - T12 - T12 $C1^{xvii}$ $- Ti2 - Ti2^{xx}$	45.58 (2)
$\frac{111 - 111 - 112}{\text{Ti} 1^{\text{vi}} - \text{Ni} 1 - \text{Ti} 2^{\text{xii}}}$	125.12 (2)	$\frac{1}{12} - \frac{112}{112} - \frac{112}{112}$ $\frac{1}{12} - \frac{112}{12} - 112$	115.62 (3)
$Ti1^{v} - Ni1 - Ti2^{xii}$	125.12 (2)	Ni1 -112 Ni1 ^{xxiii} $-Ti2$ $-Ti2^{xx}$	
$Ti1^{ii} - Ni1 - Ti2^{xii}$	• •	Ni1 ^{vi} —Ti2—Ti2 ^{xx}	55.72 (2)
$Ti2^{xi} - Ni1 - Ti2^{xii}$	70.38 (3)	Ni1—Ti2—Ti2 ^{xx}	112.73 (2)
$Ti1^{vi} - Ni1 - Ti2^{xiii}$	68.57 (5) 70.28 (2)	$Ti1^{ii} - Ti2 - Ti2^{xx}$	149.262 (5)
	70.38 (3)		100.245 (14)
$Ti1^{v} - Ni1 - Ti2^{xiii}$	125.12 (2)	$Ti1^v$ — $Ti2$ — $Ti2^{xx}$	149.135 (4)
Ti1 ⁱⁱ —Ni1—Ti2 ^{xiii}	125.12 (2)	Ti2 ^{xviii} —Ti2—Ti2 ^{xx}	60.0
Ti2 ^{xi} —Ni1—Ti2 ^{xiii}	68.57 (5)	Ti2 ^{xix} —Ti2—Ti2 ^{xx}	90.001 (1)
Ti2 ^{xii} —Ni1—Ti2 ^{xiii}	68.57 (5)	C1 ^{xvi} —Ti2—Ti2 ^{xxi}	104.34 (3)
Ti1 ^{vi} —Ni1—Ni1 ^v	55.837 (19)	C1 ^{xvii} —Ti2—Ti2 ^{xxi}	45.58 (2)
Ti1 ^v —Ni1—Ni1 ^v	104.31 (2)	Ni1 ^{xxii} —Ti2—Ti2 ^{xxi}	55.72 (2)
Ti1 ⁱⁱ —Ni1—Ni1 ^v	55.837 (19)	Ni1 ^{xxiii} —Ti2—Ti2 ^{xxi}	115.62 (3)
Ti2 ^{xi} —Ni1—Ni1 ^v	174.69 (3)	Ni1 ^{vi} —Ti2—Ti2 ^{xxi}	112.73 (2)
Ti2 ^{xii} —Ni1—Ni1 ^v	115.62 (3)	Ni1—Ti2—Ti2 ^{xxi}	149.262 (5)
Ti2 ^{xiii} —Ni1—Ni1 ^v	115.62 (3)	Ti1 ⁱⁱ —Ti2—Ti2 ^{xxi}	149.135 (3)
Ti1 ^{vi} —Ni1—Ni1 ^{vi}	104.31 (2)	Ti1 ^v —Ti2—Ti2 ^{xxi}	100.245 (14)
Ti1 ^v —Ni1—Ni1 ^{vi}	55.837 (19)	Ti2 ^{xviii} —Ti2—Ti2 ^{xxi}	90.0
Ti1 ⁱⁱ —Ni1—Ni1 ^{vi}	55.837 (19)	Ti2 ^{xix} —Ti2—Ti2 ^{xxi}	60.0
Ti2 ^{xi} —Ni1—Ni1 ^{vi}	115.62 (3)	Ti2 ^{xx} —Ti2—Ti2 ^{xxi}	60.0
Ti2 ^{xii} —Ni1—Ni1 ^{vi}	115.62 (3)	$Ti2^{xxiv}$ — $C1$ — $Ti2^{xxv}$	91.17 (4)
Ti2 ^{xiii} —Ni1—Ni1 ^{vi}	174.69 (3)	Ti2 ^{xxiv} —C1—Ti2 ^{xxvi}	88.83 (4)
Ni1 ^v —Ni1—Ni1 ^{vi}	60.0	$Ti2^{xxv}$ — $C1$ — $Ti2^{xxvi}$	180.0
Ti1 ^{vi} —Ni1—Ni1 ⁱⁱ	55.837 (19)	Ti2 ^{xxiv} —C1—Ti2 ^{xxvii}	91.17 (4)
Ti1 ^v —Ni1—Ni1 ⁱⁱ	55.837 (19)	Ti2 ^{xxv} —C1—Ti2 ^{xxvii}	88.83 (4)
Ti1 ⁱⁱ —Ni1—Ni1 ⁱⁱ	104.31 (2)	Ti2 ^{xxvi} —C1—Ti2 ^{xxvii}	91.17 (4)
Ti2 ^{xi} —Ni1—Ni1 ⁱⁱ	115.62 (3)	Ti2 ^{xxiv} —C1—Ti2 ^{xxviii}	88.83 (4)
Ti2 ^{xii} —Ni1—Ni1 ⁱⁱ	174.69 (3)	Ti2 ^{xxv} —C1—Ti2 ^{xxviii}	91.17 (4)
Ti2 ^{xiii} —Ni1—Ni1 ⁱⁱ	115.62 (3)	Ti2 ^{xxvi} —C1—Ti2 ^{xxviii}	88.83 (4)
Ni1 ^v —Ni1—Ni1 ⁱⁱ	60.0	Ti2 ^{xxvii} —C1—Ti2 ^{xxviii}	180.0
Ni1 ^{vi} —Ni1—Ni1 ⁱⁱ	60.0	Ti2 ^{xxiv} —C1—Ti2 ^{xxix}	180.0
Ti1 ^{vi} —Ni1—Ti2 ^{xiv}	65.185 (5)	Ti2 ^{xxv} —C1—Ti2 ^{xxix}	88.83 (4)
Ti1 ^v —Ni1—Ti2 ^{xiv}	166.08 (5)	Ti2 ^{xxvi} —C1—Ti2 ^{xxix}	91.17 (4)
Ti1 ⁱⁱ —Ni1—Ti2 ^{xiv}	65.185 (5)	Ti2 ^{xxvii} —C1—Ti2 ^{xxix}	88.83 (4)
Ti2 ^{xi} —Ni1—Ti2 ^{xiv}	123.55 (5)	Ti2 ^{xxviii} —C1—Ti2 ^{xxix}	91.17 (4)
Ti2 ^{xii} —Ni1—Ti2 ^{xiv}	65.437 (12)		~ /

Symmetry codes: (i) x-1/4, -y, z-1/4; (ii) -x+1/4, y, -z+1/4; (iii) -x, y-1/4, z-1/4; (iv) x-1/4, y-1/4, -z; (v) -x+1/4, -y+1/4, z; (vi) x, -y+1/4, -z+1/4; (vii) z, x-1/4; (vii) z, -x+1/4; (viii) z, -x+1/2; (viii) z, -x+1/2;