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We may infer from our calculations that the hypothetical 
dimer crystal structures A and B and the experimental chain 
structure of acetic acid are equivalent with respect to their 
lattice energies. In view of the accuracy of the method, the 
differences calculated for the lattice energies are insignificant. 
We compared these results with the SCF perturbation 
method of Crowe & Santry (1973) which yielded -49.3,  
-48-8 and -48 .4  kJ mol-1 for the dimer structures A and 
B and the chain structure respectively, thereby also 
attributing practically equal lattice energies to the three 
crystal structures. We may conclude that as long as the en- 
tropy is not taken into account, nothing can be said of the 
actual appearance of an acetic acid dimer crystal structure, 
but we have shown that structures with a packing energy as 
large as that of the experimental structure can indeed be 
constructed theoretically. 

Clearly it would be interesting to determine the crystal 
structure of the high-pressure modification of acetic acid, 
which was shown to exist by Bridgman (1916). 
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A description and assessment of the theory and application of Zachariasen's theory of extinction [Zacharia- 
sen (1973). Acta Cryst. 23, 558-564] is given. 

Introduction 

Extinction was first described by Darwin (1914) and can be 
described in terms of his mosaic block model. If the blocks 
are large and if a significant amount of energy is removed 
from t h e m a i n  beam by the planes close to the surface of 
each block, the remaining volume will receive less incident 
intensity, giving a diffracted intensity less than the kine- 
matic value. This is primary extinction and is concerned 
with coherent scattering. 

If the main beam intersects a significant number of blocks 
sufficiently well aligned to diffract a parallel beam of X-rays 
simultaneously, each block will take some energy out of 

* This paper was originally presented at the Tenth Congress of 
Crystallography, Amsterdam, August, 1975 at an open Commis- 
sion Meeting sponsored jointly by the Commission on Crystal- 
lographic Apparatus and the Commission on Charge, Spin and 
Momentum Densities. 

the main beam, reducing the incident beam and, therefore, 
the scattered intensity. This is secondary extinction and is 
concerned with incoherent scattering. 

The kinematic theory depends on there being the same 
incident intensity at all points in the crystal and, therefore, 
when extinction is present, the relationship between the 
integrated intensities and the structure factor is unknown 
and the data cannot be processed. In a paper entitled A 
General Theory of X-ray Diffraction in Crystals, Zachariasen 
(1967) attempted to relate measured intensities to the true 
kinematic structure factor when extinction was present. 
This theory greatly renewed interest in extinction and, for a 
theory which has had such widespread use, an assessment 
of the approximations used in its development and of its 
applications is obviously important. 

Description and assessment of the theory 

The theory is based on two differential equations pertaining 
to diffraction within a small, perfect crystal. 
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These equations are 
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a is the diffraction cross section. Equation Z(4a) [equation 
numbers from Zachariasen (1967) are prefaced by Z] gives 
the variation of the incident intensity, I0, as a function of 
distance through the crystal in the direction of the main 
beam. 

If a significant amount of energy is scattered from the 
main beam into the diffracted beam, some of this scattered 
energy will be rescattered into the main beam and this 
radiation will be coherent with the incident radiation. The 
equations, however, take no account of coherence since 
they involve only the intensities of the beams. They must 
be considered as basically kinematic in nature and will 
perhaps not be suitable for correction of severe primary 
extinction. 

Werner (1974) and Becker & Coppens (1974) have pointed 
out that the coordinate system used by Zachariasen lacks 
a unique origin. However, Brown & Fatemi (1974) have 
concluded that this has very little effect on the final results. 

The next important relation used by Zachariasen was 

I 0I P(el)  = --~2- d r .  Z(6) 

P(el) is the power in the diffracted beam at some angle el, 
close to the diffracting angle 0, and it can be determined 
provided I is known from the differential equations. A very 
important function ~0(a) is then introduced in the equation 

P (el) = Iova~o(a). Z(7) 

This function can be determined for crystals of known, 
regular shape and is usually expressed as an infinite series 
in at. It also depends on the scattering angle and the coef- 
ficients are therefore functions of this angle and the shape 
of the crystal. The form of the equation used by Zachariasen 
w a s  

1 
~0(a)- , Z(19) 

1 + a t  

which is the exact solution for a parallel plate crystal in the 
Bragg case and was assumed to be a good approximation 
for a sphere. This treatment severely underestimates the 
angular dependence. One reason for this was the omission 
of a sin 20 term in the expression used for the diffraction 
cross section. The approximate form of the diffraction cross 
section used was 

a(~l) = ~Q~ Z(26) 
1 + (~n~el)  2 

where ~ should be given by 

l sin 20 
2 

where ! is the thickness of the crystal. 
The total integrated intensity, P, is given by 

P= I P(el )dei  Z(8) 

and Zachariasen obtained an expression for the extinction 
factor for a small, perfect crystal, i.e. the correction for 

primary extinction. Using equations and assumptions 
similar to those already described, he then obtained an 
extinction factor for a real mosaic crystal, assuming a 
Gaussian distribution of mosaic blocks. Finally, three 
expressions for the extinction parameter in terms of the 
block size, the distribution of mosaic blocks, the reflectivity 
of the planes, the wavelength of the radiation and the size 
of the mosaic crystal, are given, but the expression inevitably 
used is 

y = (1 + 2x)-  1/2. Z(47b) 

x includes the correction for both primary and secondary 
extinction. 

The important approximations used in the development 
of the theory are, therefore: 

(1) The variation of the intensities of the main and dif- 
fracted beams are given by the transport equations Z(4a) 
and Z(4b). 

(2) The form of the function ¢p(a) applicable for a parallel 
plate in the symmetrical Bragg case is a sufficiently good 
approximation for a small, spherical crystal. 

(3) The scattering power may be described by a Lorent- 
zian distribution. 

(4) The misalignment of the mosaic blocks obeys a 
Gaussian distribution law. 

Of these approximations, the first is probably the most 
fundamental and must limit the usefulness of the equations. 
Since for the mosaic crystals the shapes and sizes of the 
blocks are unknown, it is impossible to determine the 
intensities from the blocks with coherence taken into ac- 
count, which limits the applicability of the corrections to 
secondary extinction and small primary extinction. There 
is also an obvious need for experimental investigation of 
the other assumptions. 

Appl icat ions  o f  the theory 

In the majority of the applications of this theory one as- 
sumption is always made - there is no primary extinction. 
Some of the block sizes obtained in such studies are rather 
large, greater than 10 - 4  cm although Zachariasen states 
that the block size must be less than 10 -4 cm for primary 
extinction to be neglected. The mathematical forms of the 
corrections for the two types of extinction are similar but 
the constants have different meanings, and it is obviously 
important  to know what type of extinction is present. 

If the crystal is of thickness 7", mosaic spread M and 
block size t, there will be Tit blocks intercepting the main 
beam and, since the peak width for each block will be 
approximately t/2, the number of blocks diffracting 
simultaneously, N, will be 

7"2 
N -  

Nit 2 • 

A criterion for the presence of secondary extinction can 
be that N >  1, hardly exacting considering that Zachariasen 
imposes a distribution of mosaic blocks which can only be 
correct if a large number of blocks, much greater than one, 
are diffracting at once. For this condition, t < 2 × 10-4 cm for 
M = 0 . 1  °, T=0.01 cm, and such a small block size would 
produce considerable strain inside the crystal. A much 
smaller block size would be required to increase N to a 
significant value, this block size for many crystals being 
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physically unreasonable. Since the blocks must be diffrac- 
ting singly, any extinction must be of the primary type. 

Experimental differentiation between primary and 
secondary extinction can only be made by examining the 
variation of the extinction with path length - primary 
extinction being independent of path length, secondary 
extinction being dependent on it. There has been some 
experimental evidence to show that primary extinction is 
the main type of extinction in some very simple materials, 
e.g. LiF, MgO (Lawrence, 1972, 1973), but very little 
either way in larger molecules. When extinction corrections 
using Zachariasen's equations have been applied good 
agreement has often been obtained between the calculated 
and corrected structure factors, but it cannot be automati- 
cally assumed that such agreement justifies either the 
mathematical form of the extinction or the assumption that 
only secondary extinction is present. 

Consider Zachariasen's equations for both primary and 
secondary extinction: 

y = (1 + 2x) -1/2 

where x = azAr~ (A = constant for each reflexion) for primary 
extinction and 

x= ATr, 

for secondary extinction. 
If the corrections are applied, firstly assuming only 

primary and then assuming only secondary extinction, the 
two block sizes obtained would be related by 

rp 

If during the calculation for secondary extinction, a block 
size of about 10 .4 cm was found (justifying the assumption 
that no primary extinction was present), a block size of 
about 10 .3 cm would have been obtained in the primary 
extinction calculation, and for this block size, no secondary 
extinction would have been present. The size of the block 
cannot therefore be used as a justification of the type of 
extinction assumed. 

It should be possible to justify the extinction corrections 
by determining whether the parameters which are obtained 
make sense physically. The model may lack physical reality 
but the parameters should have some physical meaning; 
the block size should be a measure of the average size of 
perfect crystal regions in the crystal and the mosaic spread 
should be a measure of the width of the diffraction pattern 
from the crystal. Both these quantities can be determined 
experimentally and this has been done for an organic 
crystal, e-oxalic acid dihydrate. This structure has been 
refined in a neutron diffraction study by Coppens & Sabine 
(1969) who used a crystal of thickness approximately 0.14 
cm. During the refinement an extinction parameter was 
refined and a block size of about 10 .4 cm obtained. 

Michell, Smith & Sabine (1969) then determined the 
block size as about 10 -2 cm by determining the dislocation 
density from X-ray topography and they concluded that 

'Zachariasen's theory gives physically unrealistic results'. 
However, if the extinction corrections had been carried out 
~.ssuming primary extinction, a block size of 3 x 10 -a cm 
would have been obtained, which is of the same order as 
that from topographs. 

Other evidence of primary extinction comes from a recent 
intensity project carried out by Denne (1972) in which he 
measured the integrated intensities from six crystals of e- 
glycine whose volumes varied by a factor of up to fifty. 
Large amounts of extinction were found in the data, this 
extinction being the same for all crystals, independent of 
the crystal dimensions, indicating primary extinction. 

Since the appearance of Zachariasen's paper, the theory 
has been adapted and improved, particularly by Becker & 
Coppens (1974) but the approach is, however, still based 
on the differential equation in intensity. We will never obtain 
a fully general solution to this problem because of the dif- 
ficulty of describing the perfect region of a crystal and de- 
fining the correct boundary conditions. In the mean time, 
many data sets are measured which suffer from extinction. 
If the standard least-squares routines are used to refine an 
extinction parameter, it must be remembered that such a 
parameter may contain only a secondary extinction cor- 
rection term, which may be inadequate, and it will inevitably 
use Zachariasen's original equation, Z(47b), which has been 
found to produce good agreement between the observed 
and calculated structure factors only when both the extinc- 
tion and the absorption are small. If a very accurate struc- 
ture is necessary or if physical effects are to be ascribed to 
the differences between observed and calculated structure 
factors, a least-squares technique using Zachariasen's equa- 
tion is not appropriate. In these situations some experi- 
mental approach is best. Perhaps the most straightforward 
technique would be to measure the data at a range of wave- 
lengths and find the kinematic structure factor by extra- 
polating to zero wavelength. Using this method, no para- 
meters of doubtful physical significance are used and it is 
irrelevant whether the extinction is of a primary or second- 
ary type. 
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