While ethanesulphonate salts of antifolate drugs crystallize well and have been extensively studied, carboxylate salts have not. Trimethoprim acetate (TA; R.C. Haltiwanger Jr., MSc Thesis, University of Virginia, 1971) is presented for comparison. Introduction of a polar group into the $5-s u b s t i t u e n t ~ w i l l ~$ perturb the binding to DHFR; structure (5) was examined for changes in packing relative to (1)-(4).

	a	b	$\mathrm{c}(\AA)$	a	β	γ°	Z	$\mathrm{~S} . \mathrm{Gp}$.
1	11.103	8.398	14.652	90	100.30	90	4	$\mathrm{P} 2 / \mathrm{c}$
2	26.247	10.254	14.562	90	120.69	90	8	$\mathrm{C} 2 / \mathrm{c}$
3	11.723	13.186	13.899	79.35	66.29	86.34	4	P 1
4	9.101	9.539	14.979	84.05	74.81	74.45	2	P 1
5	18.213	12.385	19.179	90	116.41	90	8	C / c

	A	B	x	$\mathrm{C} 2-\mathrm{N} 2$	$\mathrm{C} 4-\mathrm{N} 4(\mathrm{~A})$ 工		$w^{*}\left({ }^{\circ}\right)$
1**			3.095	1.320	1.315	63	
2	2.670	2.773	3.054	1.323	1.322	76	38
3a	2.708	2.860	2.980	1.325	1.340	70	12
3b	2.668	2.847	2.964	1.337	1.331	76	7
4	2.72	2.75	3.06	1.38	1.37	79	27
TA	2.60	2.78	3.04	1.33	1.34		11
5**			3.030	1.324	1. 325	57	

*Angle between $C^{\text {t }} \mathrm{COO}$ and pyrimidine ring planes. **Chloride salt.

The interaction of protonated ring and carboxylate ion is uniformly strong. It does not impose coplanarity, but the consistency in distance should serve as a useful anchor point for model-building.

We thank the S.E.R.C. for studentship No. 83700621 to P,K.B. and studentship No. 82314925 to J.C.
03. 3-21

STRUCTURE OF DIGITOXIGENIN BISDIGITOXOSIDE, $\mathrm{C}_{3} \mathrm{SH}_{54} \mathrm{O}_{10}$. Kuantee Go and Gopinath Kartha, Biophysics Department, Roswell Park Memorial Institute, Buffalo, New York 14263, U.S.A.

Digitoxigenin bisdigitoxoside recrystallized from ethyl acetate and hexane is orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=11.419(2), b=14.310(2), c=23.959(3) \AA$, $V=3915 \AA 3, Z=4$.

The structure was solved by multisolution methods and refined by block diagonal leastsquares to an R index of 10.4%. An ORTEP sketch of the molecule is shown below. The Dring has a $13 a, 148-h a l f-c h a i r$ conformation. The torsion angle $C(13)-C(17)-C(20)-c(22)$ is $-116^{\circ}, C(21) \ldots 0(14)$ distance is 2.943A. Unlike digoxin and digoxigenin bisdigitoxoside, there is no intramolecular H-bond between the OH at $\mathrm{C}\left(3^{\prime}\right)$ and the ring oxygen of the adjacent sugari this distance is $3.982 \AA$ (longer than 3.269A in gitoxin). There is a disordered solvent, presumably a molecule of ethyl acetate; this solvent molecule along with the oH of the cardiac steroid and those of the sugars formed H-bonds in stabilizing the structure.

03.3-22 THE CRYSTAL AND MOLECULAR STRUCTURE OF CINCHONINIUM TETRACHIOROCUPRATE 1.5HYDRATE, $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\right)^{2+}\left[\mathrm{CuCl}_{4}\right]^{2-} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$.
By B. J. Q1eksyn and S. A. Hodorowicz, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
Cinchona alkaloids - metal ions interactions are important as factors which could modify processes undergoing in living orgenisms. In reaction of $M C l_{2}$, where $M=\mathrm{Zn}, \mathrm{Co}, \mathrm{Cd}, \mathrm{Hg}$ and Cu, with cinchoninium chloride, CinCl 2^{\prime} tetrachloro-salts of general formula: $(\mathrm{Cin})^{2+}\left[\mathrm{MCI}_{4}\right]^{2-} \cdot \mathrm{aH}_{2} \mathrm{O}$ were obtained (Dyrek, Polish J. Ghem. (1976) 50, 2027). Preliminary crystallographic investigation showed that only the Cu^{2+} compound is not isomorphous with the others (Chojnacki, Oleksyn, Hodorowicz, Polish J. Chem. (1975) 49, 429; Oleksyn, Stadnicka, Hodorowicz, ibid. (1976) 50, 1645). To explain this we have undertaken the crystal structure determination, which was carried out for 4426 independent reflections (3335 with $\left|F_{0}\right|>30\left(F_{0}\right)$) measured on a CAD-4 diffractometer. The positions of Cu^{2+} ions were found with Patterson method. while those of other atome were obtainod from Fourier and difference Fourier syntheses. The current R value after anisotropic refinement of non-hydrogen atoms (513 parameters) with H atoms in fixed positions, is 0.077 .

The main difference between this structure and the group of isomorphous structures of $(\mathrm{Cin})^{2+}\left[\mathrm{MOI}_{4}\right]^{2-} \cdot \mathrm{nH}_{2} \mathrm{O}$, where $\mathrm{M} f \mathrm{Cu}$ and $\mathrm{n}=2$, are the packing conditions resulting from the fact that the asymmetric unit consiats of 2 salt and 3 water molecules. The N and 0 atoms of $\mathrm{Cin}^{2+}, \mathrm{Cl}^{-}$ions, and $\mathrm{H}_{2} \mathrm{O}$ molecules form a complicated net of hydrogen bonds (10 bond kinds of length $2.72-3.318$). The geometry of $\left[\mathrm{CuCl}_{4}\right]^{2-}$ tetrahedrons and Cin ${ }^{2+}$ cationg is comparable to that described for Cd salt (Oleksyn, Stadnicka, Hodorowicz, Acta Cryst. (1978) B34, 811).

This investigation received einancial support from World Health Organization.

