opposite sides of the plane of the propyl chain. In SDPA,
the plane defined by the side chain carbon atoms makes an angle of 70° with the adenine plane where as in ISDPA, it makes an angle of 86° and also contains $0\left(3^{1}\right)$. Thus the molecu-
lar conformation observed is determined nore by packing considerations and ease of hydrogen bond formation than by intrinsic molecular properties.

Arprinocid crystallizes in the space group P 1 with $a=7.967(2), b=11.251$ (4), $c=7.484(2) \dot{A}$ and $\alpha=93.03(2), \beta=111.36(2)$, $Y=72.58(3)$ and $z=2$. The structure mas solved direct method and reined to $3=0.105$. Each molecule participates in tmo types of A: A pairing simultaneously-tirongh paids of $N(6)-$ Fi.. $N(1)$ and IN (6)-T... N(7) hydrogen bonds about the tro inversion centres.

The authors thanli Prop. E.De Clereq for lindyy supplying componad I and Drs G. Y. Domning and I. Shinkai for a girt of Compound III. This nork foms a part of the Ph.D. thesis of F. Thomas Muthiah. ("Crystallograpinic studies. on some derivatives of nucleic acid bases and their complexes", Thesis, Uuiv. Calcutta, September 1983).
03. 5-9 Structure of 2-($(2,2-$ diacetyluinyl)Amino)-2-desoxy-ctd-glucopyrannose, $\mathrm{C}_{12} \mathrm{i}_{1} 9^{\mathrm{NO}}{ }_{7}$. By M. J. Diánez, A. López-Castro \& R. Marquez. Depto. de Optica y Sección de Física del Depto. de Investigaciones Físicas y Quimicas de la Universidad de Sevilla. Centro Coordinado del C.S. l.C., Sevilla, Spain.

As a part of structural studies on enamino-esters and ke-. tones "enaminones" the crystal structure of the title compound of formula

has been determired from x-Ray diffractometer data. A large number of substituted ethylenes are known where the $C=C$ bond is significantly longer than in ethylene ard the deviation from the planarity is quite appreciable (Abrahamsson, Rehrberg, Liljefors \& Sandstrom. 1974; Ammon \& Wheeler, 1975; Ammon, 1976; Adhikesavatu
$\&$ Venkatesan, 1981,1982). The two main factors which determine the geometry of a push-pull system are conjugation (push-pull effect) and steric strain in the planar state. In this paper we report our findings on the mole cular geometry.crystal are monoclinic, P 21 with $a=12.495^{\circ}$ (4) , $b=4.632$ (2), $c=12.394(3), 3=93.9^{\circ}(1), v=715.6 \AA^{3}$, $\mathrm{Z}=2, \mathrm{Dm}=1.33 \mathrm{Mgm}^{-3}, \mathrm{Dx}=1.34 \mathrm{Mgm}^{-3}, \lambda($ MOK $\alpha)=0.7106 \AA$, $\mu(M O K \alpha)=0.13 \mathrm{~mm}^{-1}, F(000)=308, T=3009 . \mathrm{K}$. The structure was solved by direct methods and refined by full-matrix least squares to $\mathrm{R}=0.052$ for 1317 reflections with 1 $2 \sigma\left(l_{0}\right)$. Bond lengths and angles of the glucopyrannose group are in good agreement with accepted values. As in other structure, one of the $0-C$ bord is slightly longer than the other one, and that is due to the anomeric effect. Results of the X-Ray analysis confirm that there is extensive electron delocalization involving the donor (N-sugar ririg) and acceptor (acetyl groups). Because of the delocalization, the acceptor part of the molecule assumes a carbonion-like structure. The acetyl groups adopt an EZ conformation.
03. 5-10 THE CRYSTAL AND MOLECULAR STRUCTURE OF (2R, 3R, 4S) -6-PHENYL-3, 4-DIHYDROXY-2-HYDROMETHYL-8-METHYL-7-THIOXO-1-OXA-6, 8-DIAZASPIRO-(4, 4)-NONANE. BY E. Moreno, A. López-Castro ε R. Marquez. Depto. de 0ptica y Sección de Fisica del Depto. de Investigaciones Físicas y Ouimicas de la Universidad de Sevilla. Centro Coordinado del C.S.l.C., Sevilla, Spair.

The title compound has recently been synthesized in orgaric Chemistry Dept. of Sevilla University. The compound of formula

was obtained by cyclation of 3-phenyl-1,3 dihydro-1-methyl-4 (D-1yxotetritol-1-yl-2H-imidazole-2-thione, obtained by reaction of 1-amino-1-desoxy-D-fructose and phenyl-isothiocianate. Crystals are tetragonal, space uroup $\mathrm{PH}_{1}{ }^{2}{ }_{1} 2$ with 8 molecules in the unit cell of dimersions $a=b=11.255(3), c=24.829(7) \AA$, $V=3145.2 \AA^{3}, D x=1.24 \mathrm{Mc} \cdot \mathrm{m}^{-3}, D m=1.23, T=300$ ${ }^{\sigma^{K}} \mathrm{~K}, \mu\left(M_{O} \mathrm{~K} \alpha\right)=0.23 \mathrm{~mm}^{-1}, F(000)=1248$. The structure has been solved by direct methods from 2033 dif-

