4. 1-4

QUANTITATIVE RELATIONSHIP BETWEEN ASYMMETRY PARAMETERS IN CYCLOHEXENE RING. By M. L. Giówka, Institute of General Chemistry, Technical University, £ódź 90-924, Poland.
Conformation of the medium-size rings arouses wide interest both from theoretical and practical point of view. Quantitatively, the conformation of the rings can be described by torsional angles or by different parameters derived from the angles. Pseudorotation parameters for five-membered and asymmetry parameters for six--membered rings are most often used by crystallographers, though other propositions are occasionaly scattered through the literature. All the propositions are based on a hidden assumption that the neighbouring torsional angles are interdependent.

In the cyclohexene ring the difference between ΔC_{s}^{4} and ΔC_{s}^{2} parameters (Duax \&Norton, Atlas of Steroid Structure, New York, Plenum, 1975) is a simple function of $\Delta C_{2}^{1,2}$,

$$
\Delta C_{2}^{1,2}=A \cdot\left(\left\|\Delta C_{s}^{1}-\Delta C_{s}^{2}\right\|+B\right.
$$

where A and B depend on the number of substituents in the ring and they are equal to 1.390 $(A) .0 .001(B)$ and $1.428(A),-0.207(B)$ for mono and disubstituted cyclohexene derivatives, respectively. The values have been calculated from over 50 data accessible in the literature There are only four exceptions when the term "deformation of conformation" should be used, as the calculated asymmetry parameters does not satisfy the equation given above. The deformations can be defined by the difference between the calculated and the observed values of ΔC_{2}.
the cation coordination octahedron as the result of interactions between the anions by (i) repulsive forces $\left[f=0.90\right.$ for $\left.\mathrm{CaBr}_{2}\right]$, (ii) covalent chemical bonds $[f=1.16$ for marcasite $\left(\mathrm{FeS}_{2}\right), \mathrm{E}=1.12$ for loellingite $\left.\left(\mathrm{FeAs}_{2}\right)\right]$ or (iii) hydrogen bonds $[f=1.12$ for $\operatorname{InO}(\mathrm{OH})]$. The generalized formula is
$\tan \omega=[(b-a) /(b+\overline{)}] \cdot[(q+1) /(q \cdot \ddagger-1)]$,
whereby $q=d / \operatorname{SQRT}\left(d^{2}-c^{2 / 4}\right)$ with d as the mean cation-anion distance. Note that often the sum of ionic radii is an adequate estimation of d. The formula which is still an approximation works quite well for many rather different compounds. Thus our considerations are useful for a comprehensive survey of rutile-related crystal structures.

For CaBr_{2} an accurate single-crystal structure determination has been carried out at room temperature (4-circle diffractometer, MoK_{α} radiation). CaBr_{2} crystallizes orthorhombic, space group Pnnm (No.58), with $a=6.568(1), b=6.880(1)$, and $c=4.3428(7)$ A. From 2836 measured reflections 435 unique structure factors F_{0} were obtained (merge R value 1.82%). Based on $389 \mathrm{E}_{0}$'s with $\mathrm{F}_{\mathrm{O}} \geq 3 \sigma\left(\mathrm{~F}_{\mathrm{O}}\right)$ the refinement ended in a conventional R value of 2.28 \%. The results are

Ca at $2(a) 2 / \mathrm{m} \quad 0,0,0 ; 1 / 2,1 / 2,1 / 2$.
Br at $4(\mathrm{~g}) \mathrm{m} \pm(\mathrm{x}, \mathrm{y}, 0 ; 1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2)$
with $x=0.26499(4)$ and $y=0.33722$ (4) .
The anisotropic temperature factor is given by $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} / a^{2}+U_{22} k^{2} / b^{2}+U_{33} I^{2} / c^{2}+2 U_{12} h k / a b\right)\right]$.

	$U_{11}\left(R^{2}\right)$	$U_{22}\left(R^{2}\right)$	$U_{33}\left(R^{2}\right)$	$U_{12}\left(\AA^{2}\right)$
Ca	$0.0224(3)$	$0.0229(3)$	$0.0187(3)$	$-0.0026(2)$
Br	$0.0316(2)$	$0.0329(2)$	$0.0233(2)$	$-0.0151(1)$

04.1-6 OXIDATION OF TITANIUM BY OXYGEN : STRUCTURE RELATIONS BETWEEN TITANIUM AND RUTILE TiO ${ }_{2}$. By L. LATTAUD ${ }^{*}$, D. CTOSMAK ${ }^{*}$, G. BERTRAND ${ }^{n^{\prime}}$, J. J. HEIZMANN ${ }^{*}$, A. VADON ${ }^{\text {x }}$

* Laboratoire de Recherche sur la réactivité des Solides, C.N.R.S. LA. 23, Université de DIJON B.P. 138 21004 DIJON (FRANCE).
* Laboratoire de METALLURGIE STRUCTURALE, Université de METZ, Ile du Saulcy, 57045 meTZ (FRaNCE).

The oxid layer of rutile TiO_{2} appears as a stacking of parallel leaves at the metal-gas interface, separated by empty spaces ; the leaves are linked by a few bridges. (K. JARRAYA and all (1982) C.R. ACAD. SCI. II. 294. p. 1365).

To understand that stratification phenomenom, the structure relation existing between the titanium and the rutile formed.
1- on the titanium polycrystal sheets,
2- on the titanium mono bicrystals
Have been found by means of texture goniometry. On the polycrystal sample, rutile TiO has a complete fiber texture with the (110) planes parallel to the surface of the titanium sheet.

On the monocrystal, rutile has a sharp texture of topotactic tyoe, with the (ll0) plane remaining nevertheless parallel to the monocrystal face.

The macroscopic geometry of the metal seems to play as important a part as its crystal orientations.
04. 1-7 STANDARD BOND LENGTHS IN MOLECULAR COMPOUNDS FROM EMPIRICAI. BOND LENGTH-BOND STRENGTH RELATIONSHIPS (Mg,Al,Si,P-C,N,O,F,Cl) By G. Klebe, H.B. Birgi, Laboratorium fir Chemische und Mineralogische Kristallographie, Universität Bern, Freiestr. 3, CH-3012 Bern, Switzerland

Standard bond lengths are a prerequisite for interpretations and comparisons of interatomic distances. Such distances $\left(d_{0}\right)$ are given here for bonds from $M g, A l, S i, P$ to $C, N, O, F, C l$. They are based on least squares analysis using two empirical bond strength (n) - bond length (d) relationships: (I) $n_{i} / n_{0}=\exp \left[-\left(d_{i} / d_{i 0}\right) / c\right]$ (L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, (1940)); (II) $n_{i} / n_{0}=\left(d_{i} / d_{i 0}\right)-N(G$. Donnay and R. Allmann, Amer. Min. (1970), 55, 1003; I.D. Brown and R.D. Shannon, Acta Cryst. (1973), A29, 266). The data for Al,Si,P with coordination numbers (CN) 4,5,6 were taken from the Cambridge Structural Data Base and supplemented with gas phase electron diffraction data; the data for Mg were taken from J.C.J. Bart and P. Vitarelli (Inorg. Chim. Acta (1983), 73, 215). The data include molecules with up to 4 different ligand atoms around the central atom. Details will be given in a future, full account of the work. Values of $d_{i o r} c$ and N, respectively, were determined by minimizing the expression

$$
\left(\mathrm{CN}_{0}-\sum_{i=1}^{C N} n_{i}\right)^{2}
$$

for $M g, A I, S i, P$ separately, but considering all coordination numbers simultaneously; CN is a reference coordination number, n_{0} is taken as 1 .

Results are given in the table below. The values obtained from (I) and (II) agree to within 30 in all but three cases. More interesting, but not surprising, the standard distances to oxygen obtained here mainly from organic molecular compounds with mixed coordinative environments agree with those obtained by Brown and Shannon玉rom oxides and inorganic oxyacid salts.
Table: Standard bond lengths dio (CNo $=4$); values for other CN's may be obtained from (I), (II), c and N.

$$
\begin{array}{llll}
\mathrm{Mg} & \mathrm{Al} & \text { Si } & \mathrm{P}
\end{array}
$$

C	2.032 (3)	$1.872(1)$	$1.788(1)$	a)
	$2.032(3)$	$1.872(1)$	$1.786(1)$	b)
N	$1.851(10)$	1.721 (5)	$1.616(1)$	a)
	$1.850(9)$	1.718(4)	1.615(1)	b)
$1.885(14)$	$1.701(7)$	$1.610(4)$	1.534(1)	a)
$0 \quad 1.898(11)$	1.715 (6)	$1.613(4)$	$1.534(1)$	b)
		$1.500(6)$	1.402(3)	a)
F		$1.520(5)$	1.418(3)	b)
Si(-Si)		2.391(11)	$2.168(22)$	a)
$P(-P)$		2.391 (15)	2.145(26)	b)
C1 2.297(17)	$2.131(3)$	2.026 (8)	1.935 (5)	a)
C1 $2.281(17)$	$2.131(3)$	$2.022(8)$	$1.913(5)$	b)
c $0.501(37)$	0.466 (19)	0.455 (13)	0.484 (6)	a)
$\mathrm{N} \quad 4.31(30)$	4.25 (16)	$4.01(11)$	3.41 (4)	b)
-2 0.0858	0.0195	0.0099	0.0067 a)	c)
$\sigma^{2} \quad 0.0785$	0.0182	0.0099	$0.0065 \mathrm{~b})$	c)
m $\quad 504$	522	826	1878	C)
Nobs 89	117	189	441	c)

a) (I) ; b) (II) ; c) m=number of distances used in refinement: $N_{o b s}=n u m b e r$ of structures in data set; $p=n u m b e r$ of standard bond lengths refined $\left.\sigma^{2}=\left(\Sigma n_{o b s}-\Sigma n_{c a l c}\right)^{2} / N_{o b s}-(p+1)\right)$
04.1-8 CONTRIBUTION TO THE CRYSTAL CHEMISTRY OF SODIUM HEXACHLOROANTIMONATE, -NIOBATE, AND -TANTALATE. By Henning Henke, Institut für Anorg. Chemie der Universitat Karlsruhe (TH), D 7500 Karlsruhe, Bundesrepublik Deutschland.

From single-crystal X-ray data collected at room temperature the individual structures of three sodium salts can be established:

	$a[\&]$	b	$[A]$	c	$[A]$
NaSbCl_{6}	$6.393(2)$	6.393	$10.717(4)$	--	
NaNbCl_{6}	$6.398(2)$	$6.850(2)$	$19.012(4)$	$90.72(2)$	
NaTaCl_{6}	$6.449(2)$	$6.880(2)$	$18.989(6)$	$90.87(2)$	

While NaSbCl_{6} is tetragonal with space group $P 4_{2} / m$ and $Z=2$, the niobium and tantalum analogues crystallize both in the monoclinic space group $P 2_{1} / C$; since there is a doubling of the c-axis the unit cell has $Z=4$. Parameter refinement includes absorption and extinction corrections; the final R-values are 0.018 (NaSbCl $6^{\prime}, 611$ obs.refl.), 0.018 ($\mathrm{NaNbCl}_{6}, 2214$ obs.refl.), and 0.024 (NaTaCl_{6}, 2341 obs.refl.). All three compounds contain discrete $\mathrm{MCl}_{6}{ }^{-}$ions arranged with their centres like $\mathrm{PtCl}_{6}{ }^{2-6}$ in cubic $\mathrm{K}_{2} \mathrm{PtCl}_{6}$. The same applies to the cations

