On the monocrystal, rutile has a sharp texture of topotactic tyoe, with the (ll0) plane remaining nevertheless parallel to the monocrystal face.

The macroscopic geometry of the metal seems to play as important a part as its crystal orientations.
04. 1-7 STANDARD BOND LENGTHS IN MOLECULAR COMPOUNDS FROM EMPIRICAI. BOND LENGTH-BOND STRENGTH RELATIONSHIPS (Mg,Al,Si,P-C,N,O,F,Cl) By G. Klebe, H.B. Birgi, Laboratorium fir Chemische und Mineralogische Kristallographie, Universität Bern, Freiestr. 3, CH-3012 Bern, Switzerland

Standard bond lengths are a prerequisite for interpretations and comparisons of interatomic distances. Such distances $\left(d_{0}\right)$ are given here for bonds from $M g, A l, S i, P$ to $C, N, O, F, C l$. They are based on least squares analysis using two empirical bond strength (n) - bond length (d) relationships: (I) $n_{i} / n_{0}=\exp \left[-\left(d_{i} / d_{i 0}\right) / c\right]$ (L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, (1940)); (II) $n_{i} / n_{0}=\left(d_{i} / d_{i 0}\right)-N(G$. Donnay and R. Allmann, Amer. Min. (1970), 55, 1003; I.D. Brown and R.D. Shannon, Acta Cryst. (1973), A29, 266). The data for Al,Si,P with coordination numbers (CN) 4,5,6 were taken from the Cambridge Structural Data Base and supplemented with gas phase electron diffraction data; the data for Mg were taken from J.C.J. Bart and P. Vitarelli (Inorg. Chim. Acta (1983), 73, 215). The data include molecules with up to 4 different ligand atoms around the central atom. Details will be given in a future, full account of the work. Values of $d_{i o r} c$ and N, respectively, were determined by minimizing the expression

$$
\left(\mathrm{CN}_{0}-\sum_{i=1}^{C N} n_{i}\right)^{2}
$$

for $M g, A I, S i, P$ separately, but considering all coordination numbers simultaneously; CN is a reference coordination number, n_{0} is taken as 1 .

Results are given in the table below. The values obtained from (I) and (II) agree to within 30 in all but three cases. More interesting, but not surprising, the standard distances to oxygen obtained here mainly from organic molecular compounds with mixed coordinative environments agree with those obtained by Brown and Shannon玉rom oxides and inorganic oxyacid salts.
Table: Standard bond lengths dio (CNo $=4$); values for other CN's may be obtained from (I), (II), c and N.

$$
\begin{array}{llll}
\mathrm{Mg} & \mathrm{Al} & \text { Si } & \mathrm{P}
\end{array}
$$

C	2.032 (3)	$1.872(1)$	$1.788(1)$	a)
	$2.032(3)$	$1.872(1)$	$1.786(1)$	b)
N	$1.851(10)$	1.721 (5)	$1.616(1)$	a)
	$1.850(9)$	1.718(4)	1.615(1)	b)
$1.885(14)$	$1.701(7)$	$1.610(4)$	1.534(1)	a)
$0 \quad 1.898(11)$	1.715 (6)	$1.613(4)$	$1.534(1)$	b)
		$1.500(6)$	1.402(3)	a)
F		$1.520(5)$	1.418(3)	b)
Si(-Si)		2.391(11)	$2.168(22)$	a)
$P(-P)$		2.391 (15)	2.145(26)	b)
C1 2.297(17)	$2.131(3)$	2.026 (8)	1.935 (5)	a)
C1 $2.281(17)$	$2.131(3)$	$2.022(8)$	$1.913(5)$	b)
c $0.501(37)$	0.466 (19)	0.455 (13)	0.484 (6)	a)
$\mathrm{N} \quad 4.31(30)$	4.25 (16)	$4.01(11)$	3.41 (4)	b)
-2 0.0858	0.0195	0.0099	0.0067 a)	c)
$\sigma^{2} \quad 0.0785$	0.0182	0.0099	$0.0065 \mathrm{~b})$	c)
m $\quad 504$	522	826	1878	C)
Nobs 89	117	189	441	c)

a) (I) ; b) (II) ; c) m=number of distances used in refinement: $N_{o b s}=n u m b e r$ of structures in data set; $p=n u m b e r$ of standard bond lengths refined $\left.\sigma^{2}=\left(\Sigma n_{o b s}-\Sigma n_{c a l c}\right)^{2} / N_{o b s}-(p+1)\right)$
04.1-8 CONTRIBUTION TO THE CRYSTAL CHEMISTRY OF SODIUM HEXACHLOROANTIMONATE, -NIOBATE, AND -TANTALATE. By Henning Henke, Institut für Anorg. Chemie der Universitat Karlsruhe (TH), D 7500 Karlsruhe, Bundesrepublik Deutschland.

From single-crystal X-ray data collected at room temperature the individual structures of three sodium salts can be established:

	$a[\&]$	b	$[A]$	c	$[A]$
NaSbCl_{6}	$6.393(2)$	6.393	$10.717(4)$	--	
NaNbCl_{6}	$6.398(2)$	$6.850(2)$	$19.012(4)$	$90.72(2)$	
NaTaCl_{6}	$6.449(2)$	$6.880(2)$	$18.989(6)$	$90.87(2)$	

While NaSbCl_{6} is tetragonal with space group $P 4_{2} / m$ and $Z=2$, the niobium and tantalum analogues crystallize both in the monoclinic space group $P 2_{1} / C$; since there is a doubling of the c-axis the unit cell has $Z=4$. Parameter refinement includes absorption and extinction corrections; the final R-values are 0.018 (NaSbCl $6^{\prime}, 611$ obs.refl.), 0.018 ($\mathrm{NaNbCl}_{6}, 2214$ obs.refl.), and 0.024 (NaTaCl_{6}, 2341 obs.refl.). All three compounds contain discrete $\mathrm{MCl}_{6}{ }^{-}$ions arranged with their centres like $\mathrm{PtCl}_{6}{ }^{2-6}$ in cubic $\mathrm{K}_{2} \mathrm{PtCl}_{6}$. The same applies to the cations

