07.1-13 GROWTH OF PURE AND DOPED TRIGLYCINE SULPHATE SINGLE CRYSTALS. By M.Gaffar, and A. Abu El-Fadl, Physics Department, Faculty of Science, Assiut University, Assiut, Egypt.
Large single crystals of pure and doped Triglycine sulphate are obtained in the temperature range $44^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ using the falling temperature method. The divalent ions Ni, Co, and Cu as well as the trivalent C_{r} and $F e$ are used as the dopant ions. The effect of these ions upon speed of growth, crystal parameters, density, crystal purity and some other physical properties is studied. Conclusions about the relationship between the type of the dopant and physical properties of TGS are drawn.
07. 1-14 STUDY OF SEED-MEII INTERFACE IN CZOCHRAISKI GROWN POTASS IUM CHIORIDE S INGIE
CRYSTALS BY X-RAY TOPOGRAPHY, By Krishan Ial, Rov. Ananta Murthy, Vijay Kumar, S.D. Sharma and S.K. Halderg National Physical Iaboratory, New Delhi - 110 012, India.

The specimen used were grown on a system developed in our Iaboratory (Ial et.al, J. Crystal Growth (1982) 56, 125) along $\langle 001\rangle$ direction. Rate of growith was in the range of $6 \mathrm{~mm} / \mathrm{hr}$ to $25 \mathrm{~mm} / \mathrm{hr}$. Rate of seed rotation was 30 rpm and 50 rpm . The samples were cleaved from the boule, ground, lapped and etched in dilute solution of water in ethyl alcohol.

For topographic investigation a camera similar to lang camera developed in our laboratory was used (Verma et.al, Ind. J. Pure \& Appl, Fhys. (1974)12,350; Lal in Synthesis, Crystal Growth and Characterization, K. Ial (Ed.) NorthHolland, 1982, ${ }^{2} .215$).
The effect of rate of growth and rate of seed rotation has been studied on the seed-melt interface.
Diffraction curres, stationary and profection topographs were recorded by using \{200\}, \{020\} and \{220\} planes. In topographs the strain at the seed-melt interface is clearly observed and characterized.
These crystals were found to possess a high degree of perfection (Ial and Singh, J. Grystal Growth, (1981) 54, 493).
07.1-15 КИНЕТИКА РОСТА И МОРФОГЕНЕЗ КРИСТАЛЛОВ ОРТОНИОБАТА СУРЂМН В СВЯВИ С ИХ ФИЗИЧЕСКИМИ СВОИСТВАМИ. В. Н. Пополитов (Институт Криоталлограф̆ии AH CCCP, Москва), Р. М.Алиев, М.Г.Рамазанзаде, Н.А.Алиев (Азербайджанский Пнститут Нефтп и Химии, Баку), СССР.

Экопериментами по гидротермалвному синтеЗу и выращивании кристаллов SbNbO_{4} определена область однофазного выхода кристаллов в состав ленных фозовых диаграммах систем:
$\mathrm{Sb}_{2} \mathrm{O}_{3}-\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Sb}_{2} \mathrm{O}_{3}-\mathrm{Nb}_{2} \mathrm{O}_{5}-K H \mathrm{~F}_{2}-\mathrm{H}_{2} \mathrm{O}$,
$\mathrm{Sb}_{2} \mathrm{O}_{3}-\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{KHF}-\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$.
Габитус полученных кристаллов ($\mathrm{C}_{2 \text { у }}{ }^{-\mathrm{mm} 2}$, a:в:c $=0,8879: I: 2, I 299$) определяетсन сильныи развичием $\{00 I\},\{I I O\},\{I O I\},\{I I I\}, ~ с$ их нижними прототипами и всегда является таблитчатым (иногда появлялисд также формы $\{107\}$ и $\{10 \overline{7}\}$)。

В целях выяснения отношения Формы к струк туре произведен полный структурно-геометричес кий анализ оноло 1000 возможных простых форщ роста SbNbO_{2}. Реальная Форма полученных в экспериментах кристаллов находится в хорошем согласши с выводами внполненното теоретичесного анализа.

Установлено, что снорость ровта монокристаллов в общем виде определяется уравнением: $V=\operatorname{ATSK}\left(a_{\mathrm{Nb}_{2} \mathrm{O}_{5}} \cdot \theta_{\mathrm{Nb}_{2} \mathrm{O}_{5}}\right)^{n_{1}} \cdot\left(a_{\mathrm{Sb}_{2} \mathrm{O}_{3}} \cdot \theta_{\mathrm{Sb}_{2} \mathrm{O}_{3}}\right)^{n_{2}}$ где $\triangle \mathrm{T}$-перепад to $^{\circ}, \underset{\text { поверхность затравоч- }}{ }-$ ного монокристалла, $К-$ константа скорости роста, а-активная концентрация исходннх компонентов (лК) в растворе, Ө-доля поверхности монокристалла, занятая адсорбированными растворимыми формами $И К, n_{1}$ н n_{2}-формальный порядок реакции по реагирующим Формам растворенннх ИК.

Серией энспериментов вылснено влияние неличия примесей $\mathrm{Pb}, \mathrm{Sr}, \mathrm{Zn}, \mathrm{Ti}, \mathrm{Co}, \mathrm{Fe}, \underline{y}$, Iu, Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Nd, Ce в среде нристаллизации (и в присталле) на мехәнизм и кинетину роста отдельннх граней, на Форму и важнейщие Физичесние свойства выращенннх кристаллов.

