08.2-7 THE CRYSTAL STRUCTURES OF NaKGeO3 AND $\mathrm{K}_{2} \mathrm{GeO}_{3}$. By E . Halwax and H . Völlenkle, $\mathrm{In}-$ stitut für Mineralogie, Kristallographie und Strukturchemie, TU Wien, A-1060 Wien, Austria.

The title compounds were synthesized by fusion of appropriate quantities of $\mathrm{GeO}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $900^{\circ} \mathrm{C}$. Single crystals sealed in Lindemann-glass capillaries were investigated with a four-circle diffractometer (PW 1100) using MoKo radiation. The crystal structures of both compounds were solved by direct methods (MUITAN) and refined by the method of least squares.

Crystal data and parameters of refinement are: NaKGeOs, $\mathrm{Pbn}_{2}, \mathrm{Z}=4, \mathrm{a}=10.670(5), \mathrm{b}=6.895(3)$, $\mathrm{c}=4.803(1) \AA, D_{x}=3.434 \mathrm{gcm}^{-3}, 527$ independent observed reflections used for anisotropic refinement, $\mathrm{R}=0.048 ; \mathrm{K}_{2} \mathrm{GeO}_{3}$, Pbca, $\mathrm{Z}=40$, $\mathrm{a}=$ $23.033(5), b=32.887(8), \quad c=5.453(1) \AA, D_{x}=3.197$ $\mathrm{gcm}^{-3}, 2298$ reflections used for isotropic refinement, $\mathrm{R}=0.123$.

The crystal structures of both compounds contain infinite chains of composition $\left[\mathrm{GeO}_{3}\right]_{n}^{-2 n}$ extending parallel to the c axis (zweier single chains). The projection of the chains on (OO1) exhibits pseudohexagonal symmetry, very similar to $\mathrm{Na}_{2} \mathrm{GeO}_{3}$ (Cruickshank et al., Acta Cryst. B34 (1978) 1333). In $\mathrm{Na}_{2} \mathrm{GeO}_{3}$, however, this symmetry results from the nearly close-packed arrangement of the oxygen atoms, while this is no longer true for $\mathrm{K}_{2} \mathrm{GeO}_{3}$. In NaKGeO_{3} ribbons of close-packed oxygen atoms have remained. The chains in the three structures differ essentially in symmetry (mc2, in $\mathrm{Na}_{2} \mathrm{GeO}_{3}, 2_{7}$ in $\mathrm{NaKGeO}_{3}, 1$ and c for the three independent chains in $\mathrm{K}_{2} \mathrm{GeO}_{3}$).

It is shown that a symmetry relation can be established between the structures of $\mathrm{Na}_{2} \mathrm{GeO}_{3}$, NaKGeO_{3} and $\mathrm{K}_{2} \mathrm{GeO}_{3}$. The structure of $\mathrm{K}_{2} \mathrm{GeO}_{3}$ is in fact a $2 \times 5 \times 1$ superstructure of a hypothetical structure whose space group Cmom is a supergroup of the space groups of $\mathrm{Na}_{2} \mathrm{GeO}_{3}$ (Cmc_{7}) and $\mathrm{K}_{2} \mathrm{GeO}_{3}$ (Pbca). The space group of $\mathrm{NaKGeO}_{3}\left(\mathrm{Pbn}_{7}\right)$, on the other hand, is a minimal subgroup of the space group of $\mathrm{Na}_{2} \mathrm{GeO}_{3}$.
08. 2-8

STRUCTURAL CHEMISTRY OF THALLIUM(I) THIOBORATES AND SELENOBORATES By B. Krebs and W. Hamann, Anorganisch-Chemisches Institut der Universität Münster, Corrensstr. 36, D-4400 Münster, Fed. Rep. of Germany

In binary and ternary boron sulfides so far known systems of corner-sharing trigonal planar BS_{3} units are observed. $\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}, \mathrm{~K}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}$ and the corresponding acid $\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}$ contain trimeric $\mathrm{B}_{3} \mathrm{~S}_{6}{ }^{3-}$ ions and $\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}$ molecules. In the unusual layer structure of $B_{2} S_{3}$ corner-sharing $B S_{3}$ groups form six-membered $B_{3} S_{3}$ and four-membered $B_{2} S_{2}$ rings. The novel porphin-like molecular $\mathrm{B}_{8} \mathrm{~S}_{16}$ and its polymeric chain isomer BS_{2} contain as additional structural elements S_{2} groups which connect the planar BS_{3} units to form trithiadiborolane (-B-S-S-B-S-) rings. All these systems have significant $B-S$ bonding (references: see B. Krebs, Angew. Chem. (1983) 95, 113; Angew. Chem. Int. Ed. (1983) 22, 113).
In the crystal structures of $\mathrm{TlBS}_{2}, \mathrm{TlBS}_{3}, \mathrm{TlBSe}_{3}, \mathrm{Tl}_{3} \mathrm{BS}_{3}$ and $\mathrm{Tl}_{3} B S e_{3}$, we could now show that the first three phases contain boron tetrahedrally coordinated by sulfur or selenium. Besides $\mathrm{Pb}_{4} \mathrm{~B}_{4} \mathrm{~S}_{10}$ and $\mathrm{Ag}_{6} \mathrm{~B}_{10} \mathrm{~S}_{18}$ they are the first examples for this high coordination number. TlBS_{2} shows polymeric $\left(\mathrm{BS}_{2}{ }^{-}\right) \mathrm{n}$ ions built of alternating chairlike $B_{3} S_{3}$ rings and $B_{2} S_{2}$ rings linked at the tetrahedral boron sites. TlBS_{3} and TlBSe_{3} are the first "perthio(seleno)borate" structures and contain non-planar trithiadiborolane rings which are spirocyclically linked by boron to form $\left(\mathrm{BS}_{3}{ }^{-}\right)_{\mathrm{n}}$ and $\left(\mathrm{BSe}_{3}{ }^{-}\right)_{\mathrm{n}}$ chains (Fig.).
In the ortho compounds $\mathrm{Tl}_{3} \mathrm{BS}_{3}$ and $\mathrm{Tl}_{3} \mathrm{BSe}_{3}$, on the other hand, trigonal planar $B X_{3}$ groups are observed which can be regarded as a new type of discrete $\mathrm{BX}_{3}{ }^{3-}$ anions ($X=$ $S, S e)$. The crystal structure type appears to be yet un-

In the tetrahedral groups the mean $B-S$ ($B-S e$) distances are $1.93 \AA(2.06 \AA)$, the mean trigonal $B-S(B-S e)$ bond lengths are observed to be $1.83 \AA(1.95 \AA) . \mathrm{Tl}(\mathrm{I})$ is in irregular 8-, 9- and 10-coordination.
Crystal data: $\mathrm{T1}_{3} \mathrm{BS}_{3}$: space group $\mathrm{P} 2_{1} / \mathrm{m}, \mathrm{a}=5.444(2)$, b
$=9.699(3), c=6.690(2) \AA, B=98.13(2)^{\circ}, Z=2, d_{x}=$
$6.84 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$; TlBSe_{3} : space group $\mathrm{Cc}, \mathrm{a}=7.256(2), \mathrm{b}=$
$12.137(3), C=7.051(2) \AA, B=128.93(3)^{\circ}, Z=4 ; d_{x}=$ $6.21 \mathrm{~g} \cdot \mathrm{~cm}^{-3} ; \mathrm{Tl}_{3} \mathrm{BSe}_{3}$: space group $\mathrm{P} 2_{1} / \mathrm{m}, \mathrm{a}=5.547(2)$, b
$=10.099(3), c=6.852(2) \AA, B=97.59(3)^{\circ}, Z=2, d_{x}=$ $7.51 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ (see also B. Krebs, W. Hamann, Z. Kristallogr. (1983) 162, 149).

