08.2-7 THE CRYSTAL STRUCTURES OF NaKGeO_3 AND K_2GeO_5. By E. Halwax and H. Völlenkle, Institut für Mineralogie, Kristallographie und Strukturchemie, TU Wien, A-1060 Wien, Austria.

The title compounds were synthesized by fusion of appropriate quantities of GeO₂, Na₂CO₃ and K_2CO_3 at 900°C. Single crystals sealed in Lindemann-glass capillaries were investigated with a four-circle diffractometer (PW 1100) using MoK \propto radiation. The crystal structures of both compounds were solved by direct methods (MULTAN) and refined by the method of least squares.

Crystal data and parameters of refinement are: NaKGeO₅, Pbn2₁, Z=4, a=10.670(5), b=6.895(3), c=4.803(1) Å, D_x =3.434 gcm⁻⁵, 527 independent observed reflections used for anisotropic refinement, R=0.048; K₂GeO₃, Pbca, Z=40, a= 23.033(5), b=32.887(8), c=5.453(1) Å, D_x =3.197 gcm⁻³, 2298 reflections used for isotropic refinement, R=0.123.

The crystal structures of both compounds contain infinite chains of composition $[GeO_3]_n^{2n}$ extending parallel to the c axis (zweier single chains). The projection of the chains on (OO1) exhibits pseudohexagonal symmetry, very similar to Na₂GeO₃ (Cruickshank et al., Acta Cryst. <u>B34</u> (1978) 1333). In Na₂GeO₃, however, this symmetry results from the nearly close-packed arrangement of the oxygen atoms, while this is no longer true for K₂GeO₃. In NaKGeO₃ ribbons of close-packed oxygen atoms have remained. The chains in the three structures differ essentially in symmetry (mc2₁ in Na₂GeO₃, 2₁ in NaKGeO₃, 1 and c for the three independent chains in K₂GeO₃).

It is shown that a symmetry relation can be established between the structures of Na_2GeO_3 , $NaKGeO_3$ and K_2GeO_3 . The structure of K_2GeO_3 is in fact a 2x5x1 superstructure of a hypothetical structure whose space group Cmcm is a supergroup of the space groups of Na_2GeO_3 (Cmc2₁) and K_2GeO_3 (Pbca). The space group of NaKGeO₃ (Pbn2₁), on the other hand, is a minimal subgroup of the space group of Na_2GeO_3 .

08.2-8 STRUCTURAL CHEMISTRY OF THALLIUM(I) THIO-BORATES AND SELENOBORATES By <u>B. Krebs</u> and W. Hamann, Anorganisch-Chemisches Institut der Universität Münster, Corrensstr. 36, D-4400 Münster, Fed. Rep. of Germany

In binary and ternary boron sulfides so far known systems of corner-sharing trigonal planar BS₃ units are observed. Na₃B₃S₆, K₃B₃S₆ and the corresponding acid H₃B₃S₆ contain trimeric B₃S₆³ ions and H₃B₃S₆ molecules. In the unusual layer structure of B₂S₃ corner-sharing BS₃ groups form six-membered B₃S₃ and four-membered B₂S₂ rings. The novel porphin-like molecular B₈S₁₆ and its polymeric chain isomer BS₂ contain as additional structural elements S₂ groups which connect the planar BS₃ units to form trithiadiborolane (-B-S-S-B-S-) rings. All these systems have significant B-S bonding (references: see B. Krebs, Angew. Chem. (1983) <u>95</u>, 113; Angew. Chem. Int. Ed. (1983) 22, 113). In the crystal structures of TIBS₂, TIBS₃, TIBSe₃, TI₃BS₃

In the crystal structures of 1185_2 , 1185_3 , 1185_3 , 1185_3 , 11_385_3 and Tl_3BSe_3 , we could now show that the first three phases contain boron tetrahedrally coordinated by sulfur or selenium. Besides $Pb_4B_4S_{10}$ and $Ag_6B_{10}S_{18}$ they are the first examples for this high coordination number. TIBS₂ shows polymeric $(BS_2^-)_n$ ions built of alternating chairlike B_3S_3 rings and B_2S_2 rings linked at the tetrahedral boron sites. TIBS₃ and TIBSe₃ are the first "perthio-(seleno)borate" structures and contain non-planar trithiadiborolane rings which are spirocyclically linked by boron to form $(BS_3^-)_n$ and $(BSe_3^-)_n$ chains (Fig.).

In the ortho compounds Tl_3BS_3 and Tl_3BSe_3 , on the other hand, trigonal planar BX_3 groups are observed which can be regarded as a new type of discrete BX_3^{3-} anions (X = S, Se). The crystal structure type appears to be yet unknown.

In the tetrahedral groups the mean B-S (B-Se) distances are 1.93 Å (2.06 Å), the mean trigonal B-S (B-Se) bond lengths are observed to be 1.83 Å (1.95 Å). T1(I) is in irregular 8-, 9- and 10-coordination. Crystal data: T1₃BS₃: space group P2₁/m, a = 5.444(2), b = 9.699(3), c = 6.690(2) Å, β = 98.13(2)⁰, Z = 2, d_x = 6.84 g·cm⁻³; T1BSe₃: space group Cc, a = 7.256(2), b =

12.137(3), c = 7.051(2) Å, β = 128.93(3)⁰, Z = 4; d_x = 6.21 g·cm⁻³; Tl₃BSe₃: space group P2₁/m, a = 5.547(2), b = 10.099(3), c = 6.852(2) Å, β = 97.59(3)⁰, Z = 2, d_x = 7.51 g·cm⁻³ (see also B. Krebs, W. Hamann, Z. Kristallogr. (1983) <u>162</u>, 149).