08.2-25 CRYSTAL STRUCTURE OF THE PHASE IV OF RbLiSO 4 . By W.Steurer, H. Wittmann and H . Jagodzinski, Inst.f.Kristallographie und Mineralogie' d.Universität, Theresienstr. 41, D-8000 Munchen 2, FRG and A.Pietraszko, Inst. of Low Temperatures and Structure Research of the Polish Academy of Sciences, POB 937, 50-950, Wroclaw, Poland.
The structure of the commensurate modulated phase IV was determined by single crystal X-ray diffractometry at 446 K . Space group: P11n(No.7), $Z=20, a=9.157(1), b=5.316(1), c=$ $43.654(3) \AA, \mathrm{H}^{-29.97(1)^{\circ}, \mathrm{U}=2125 \mathrm{~A}^{3}, \mathrm{D}_{\mathrm{x}}=2.95 \mathrm{Mgm}^{-3}, ~}$ $R=0.073, R_{W}=0.047$ for 1862 reflexions ($1>0$).
The fivefold superstructure parallel \subseteq is caused by the ordering of the SO_{4} tetrahedra.
If we designate a right(left)-hand rotation around c by $+(-)$ then the sequence of the SO_{4} groups in one unit cell can be described by: ${ }^{4}$ $++\cdots++-+--$ (phase I: $\pm \pm$, phase III: -+++ , phase $\mathrm{V}_{442 \mathrm{~K}}:+$, phase $\mathrm{V}_{\mathrm{rt}}:=+$ (A.Pietraszko and H . Jagodzinski(1984). Submitted to Z.Kristallogr.)).
To facilitate the comparison of the different phases, refinements of the high temperature phase I and the average structures of the phases III and IV were performed using split positions or anharmonic temperature factors, and the probability density functions of all atoms were calculated (program Prometheus. U.H. Zucker, E. Perenthaler, W.F.Kuhs, R. Bachmann and H.Schulz(1983).J.Appilied Cryst.16,358). The structural relationships between the different phases will be discussed.
08.2-26 STRUCTURAI CHEMISTRY OF TERNARY THALIIUM CHALCOGENIDES: THE CRYSTAL STRUCIURES OF T1 $1_{4} \mathrm{SiS}_{4}$, $\mathrm{TI}_{4} \mathrm{SiSe}_{4}, \mathrm{Tl}_{2} \mathrm{Ge}_{2} \mathrm{~S}_{4}$, AND $\mathrm{Tl}_{5} \mathrm{Ge}_{2} \mathrm{Te}_{6}$.
G. Eulenberger, Institute of Cheristry, Hohenheim University, D-7000 Stuttgart 70, Federal Republic of Germany.

The title compounds were prepared from the elements by thermal synthesis. The determination of the crystal structures was based on single crystal intensity measurements carried out on a four-circle diffractoneter (experimental absorption corrections by ψ scans).
$\mathrm{Tl}_{4} \mathrm{SiS}_{4}$ is monoclinic, space group Cc with a $=$ $12.518(3), b=11.241(2), c=7.567(2) \AA, B=$ $112.80(2)^{\circ}$, and $Z=4$. The structure is composed of tetrahedral $\left[\mathrm{SiS}_{4}\right]^{4-}$ anions (mean distance $\mathrm{Si}-\mathrm{S}$: 2.130 A) and Tl^{+}cations, each surrounded by six S atoms. The compound is isostructural with $\mathrm{TI}_{4} \mathrm{GeS}_{4}$ (G. Eulenberger, Z. Kristallogr. (1977), 145, 427). New structural aspects will be discussed.
$\mathrm{Tl}_{4} \mathrm{SiSe}_{4}$ crystallizes in the monoclinic system as well, space group $C 2 / c$ with $a=11.664$ (9), $b=7.277$ (4), $C=24.903(12) A_{t} B=99.93(5)^{\circ}$, and $Z=8$. In analogy to $\mathrm{Tl}_{4} \mathrm{SiS}_{4}$, the structure is characterized by tetrahedral [$\left.\mathrm{SiSe}_{4}\right]^{4-}$ anions (mean distance Si-Se: 2.272 A) connected by TI ${ }^{+}$cations at five sets of positions. The SiSe_{4} tetrahedra build up slabs composed of two layers of SiSe_{4} tetrahedra parallel (001). The central plane between them is occupied by Tl atoms. These SiSe_{4} double layers are again linked by the remaining \mathbb{T} atoms arranged in parallel slabs. Each of three Tl atoms is coordinated to six se atoms. The two further Tl atoms are in (5+1)- and 4-coordination, respectively, and exhibit strong stereochemical activity of the lone $6 s$ electron pair of univalent thallium.
$\mathrm{Tl}_{2} \mathrm{Ce}_{2} \mathrm{~S}_{4}$ is orthorhombic, space group Pnma with $\mathrm{a}=$
$8.824(2), b=6.633(2), c=13.977(4) \AA$, and $z=4$. The structure is characterized by infinite double chains ${ }_{\infty}^{1}\left[\mathrm{Ge}_{2}^{I I} \mathrm{Ge}_{2}^{I V_{S}}\right]^{4-}$ held together by TI+ cations. The double chains are composed of Ge-S single chains containing alternately divalent and tetravalent Ge atoms. These single chains are linked in pairs by s bridges between the Ge(II) and Ge(IV) atoms. As in typical thiogemanates (IV), the tetravalent Ge atoms are tetrahedrally coordinated to four S atoms (mean distance Ge(IV)-S: $2.224 \AA$). The divalent Ge atoms are bonded to three atoms forming with them ψ-tetrahedral arrangements (mean distance Ge(II)-S: $2.355 \AA$). The lone electron pair of the $\mathrm{GeS}_{3} \mathrm{E}$ tetrahedron is directed towards a Tl atom at a distance of $3.106 \AA$ only. The nine S atoms around Tl(2) form a distorted tricapped trigonal prism. With Tl (1), one of the S atoms is replaced by a Ge(II) atom (mean distance Tl-S: 3.437 A) .
$\mathrm{Tl}]_{6} \mathrm{Ge}_{2} \mathrm{Te}_{6}$ is triclinic, space group ${ }_{0} P \overline{1}$, with $a=$ $9.471(2), b=9.714(2), c=10.389(2) \AA, \alpha=89.39(1)$, $B=97.27(1)^{\circ}, \gamma=100.79(1)^{\circ}$, and $Z=2$. The structure is built from $\mathrm{Ge}_{2} \mathrm{Te}_{6}$ units with Ge-Ge bonds which are linked in a three-dimensional structure by TI atoms coordinated to essentially six Te atoms. The Ge atoms are tetrahedrally bonded to three $T e$ atoms and one further Ge atom. The most important mean distances are: $d(\mathrm{Ge}-\mathrm{Ge})=2.456 \AA, \mathrm{~d}(\mathrm{Ge}-\mathrm{Te})=2.573 \AA$, and $\mathrm{d}(\mathrm{Tl}-\mathrm{Te})=$ 3.511 A. The lone 65 electron pairs of $T I(I)$ display significant stereochemical activity.
08.2-27 STRUCIURE AND BONDING IN URANIUM(IV) COM= PLEXES CONTAINING THE $\mathrm{UO}_{2} \mathrm{X}_{4}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ CHRCMOPHORE

By J.F de wet and M.R Caira, Crystallography Group, Chemistry Department, University of Port Elizabeth, Port Elizabeth, South Africa.

In octahedrally co-ordinated camplexes of uranium containing the $\mathrm{UO}_{2} \mathrm{X}_{4}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) chromophore the bonding distances involving uranium have been observed to display a complementary axial-equatorial relationship (J.F. de wet and J.G.H. du Preez, J.C.S. (Dalton), 1978, 592-596). Specifically, the shorter the (axial) $\mathrm{U}-\mathrm{O}$ bonds, the longer the (equatorial) $\mathrm{U}-\mathrm{X}$ bonds, which adopt a more-or-less square planar configuration, and vice versa. These effects may be interpreted in terms of the predominantly ionic character of uranium in such complexes, and of the resulting ligand-ligand repulsions; the effects are, however small, and require accurate structure determinations.

We report here on the structural data obtained on six further U(IV) complexes of the type UX $\mathrm{U}_{4} \mathrm{I}_{2}$ (Table 1), where I is an oxygen donor ligand terminating in $R=0$ ($\mathrm{R}=\mathrm{C}, \mathrm{S}, \mathrm{P}, \mathrm{As}$). The structure determinations were based on data in which errors due to absorption were eliminated as far as possible.

The U-X and $U-O$ bond lengths observed in these structures confirm and extend the evidence found previously for axial-equatorial relationships (Toc.cit.), with mean values (in A) for $U-X$ and $U-O$ in each structure, respectively: 1: $2.605(3), 2.248(6)$; $2: 2.604(8), 2.249(12) ; \quad 3: 2.607(8), 2.268(17)$; 4: $2.770(1), 2.218(8) ; \quad 5: 2.619(3), 2.231(7)$;
6: $2.804(7), 2.145(34$.

TABIE 1
Ligand
Halogen
Crystal Data

$1\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2}\right)_{2} \mathrm{SO}$	Cl	$\begin{aligned} & a=10.10, b=10.43, \quad c=13.29 \AA ; \\ & \beta=106.36^{\circ} ; \quad \mathrm{Z}=2 ; \quad \mathrm{P}=21 / \mathrm{c} \end{aligned}$
$2(\mathrm{MePhN})_{2} \mathrm{CO}$	Cl	$\begin{aligned} & a=14.01, \quad b=19.33, \quad c=14.448 ; \\ & \beta=119.28^{\circ} ; \quad z=4 ; \quad P 21 / n \end{aligned}$
3* (MePhN) ${ }_{2} \mathrm{CO}$	Cl	$\begin{aligned} & \mathrm{a}=15.87, \mathrm{~b}=13.21, \mathrm{c}=15.76 \AA ; \\ & \mathrm{Z}=4 ; \mathrm{Pna2}_{1} \end{aligned}$
4 (MePhN) ${ }_{2} \mathrm{CO}$	Br	$\begin{aligned} & a=14.39, b=19.85, c=24.71 \stackrel{\circ}{\mathrm{~A}} \\ & \mathrm{Z}=8 \text {; Fdad } \end{aligned}$
$5^{* *}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}\right){ }_{3} \mathrm{PO}$	Cl	$\begin{aligned} & a=17.03, b=11.71, c=18.21 \AA ; \\ & \beta=109.2^{\circ} ; \quad \mathrm{Z}=4 ; \mathrm{C} / \mathrm{C} \end{aligned}$
$6 \mathrm{Ph}_{3} \mathrm{AsO}$	Br	$\begin{aligned} & a=10.24, b=15.79, \quad c=12.19 \AA \\ & S=100.94^{\circ} ; \quad Z=2 ; \quad \mathrm{F} 21 \end{aligned}$

*polymorph of 2
**pyrrolidyl
08. 2-29 $\mathrm{Pb}_{8}\left[\mathrm{O}_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{Si}_{4} \mathrm{O}_{13}\right)\right]$, A NEW TETRASILICATE. By R. Fröhlich, Institut für Kristallographie, Universität, D-7500 Karlsruhe, Germany

In the system $\mathrm{PbO}-\mathrm{PbSO}_{4}-\mathrm{PbSiO}_{3}$ several ternary phases exist; the compound $8 \mathrm{PbO} \cdot \mathrm{SO}_{3} \cdot 4 \mathrm{SiO}_{2}$ melts congruently at $765^{\circ} \mathrm{C}$ and shows no phase transitions (Billhardt, thesis, Karlsruhe, 1763).
Single crystals can be prepared by slow cooling from $800^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ and subsequent annealing at $600^{\circ} \mathrm{C}$. Crystal data: monoclinic space group $\mathrm{P} 2_{\mathrm{f}} / \mathrm{n}$; $\mathrm{a}=914 . \mathrm{O}(3), \mathrm{b}=1955.4(6), \mathrm{c}=1131.3(4) \mathrm{pm}$, $B=89.68(3)^{\circ} ; Z=4$. The structure was solved by Patterson and Fourier methods. The present value of $R=0.115$ for 2456 observed reflections is poor due to a preliminary absorption correction for the irregular shape of the crystal investigated. Further refinement is in progress. The basic building blocks of the structure are two tetrahedral $\left[\mathrm{Pb}_{4} \mathrm{O}\right]^{5+}$-units, a sulphate group, and the tetrasilicate anion shown below.

$\left[\mathrm{Si}_{4} \mathrm{O}_{13}\right]^{10^{-}}$-ion; Si drawn as thermal ellipsoids.
08. 2-30 THE CRYSTAL STRUCTURE OF $\mathrm{Zn}_{2} \mathrm{Ti}_{18} \mathrm{~S}_{32}$

By I. Kawada, M. Onoda and M. Saeki, National Institute for Research in Inorganic Materials, Sakura-mura, Ibaraki-ken 305, Japan.

Expecting tetrahedral coordination of metalsulfur in M-Ti-S system (M=metal), we have synthesized a new phase of $\mathrm{Zn}_{2} \mathrm{Ti} \mathrm{g}^{\mathrm{S}} 32$. (M. Saeki and M. Onoda, Chem. Lett. $1329^{\circ} 38^{\circ} 8_{2}$).

Obtained specimen was in powder form of dark gray color. 69 independent powder diffraction data were collected by an X-ray powder diffractometer using Cu- and Mo-target. Crystal system is cubic; $a=9.843 \mathrm{~A}$. Taking no account of 2 very diffuse reflections, space group is Fd3m - 0 .

Crystal structure was solved by crystal chemical considerations. The structure consists fundamentally of cubic closest packing of sulfur atoms. 16 Ti atoms occupy octahedral sites (Ti (1)) and 2 Ti atoms occupy statistically another l6 octahedral sites (Ti(2)). 2 zn atoms occupy statistically 8 tetrahedral sites which are surrounded only by Ti (2) and S. (Table 1.). Considering very short distance between Zn and Ti(2) (2.13 A), it is probable that Zn and $\mathrm{Ti}(2)$ do not simultaneously coexist at the nearest positions. If one takesaccount of the existence of diffuse reflections (e.g. 200 etc.), more detailed feature of the structure wili be clarified.

| Table | m | x | y | z | B |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |

Zn	$8(\mathrm{a})$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$
$\mathrm{Ti}(1)$	$16(\mathrm{a})$	1	$1 / 2$	$1 / 2$	$1 / 2$

$\mathrm{Ti}(1)$	$16(\mathrm{~d})$	1	$1 / 2$	$1 / 2$	$1 / 2$
$\mathrm{Ti}(2)$	$16(\mathrm{c})$	$1 / 8$	0	0	0

$\begin{array}{lllllll}\mathrm{S} & 32(e) & 1 & 0.2504 & 0.2504 & 0.2504 & 0.92\end{array}$ number of reflections: 67, $\mathrm{R}=0.0695$.

