TABIE 1
Ligand
Halogen
Crystal Data

$1\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2}\right)_{2} \mathrm{SO}$	Cl	$\begin{aligned} & a=10.10, b=10.43, \quad c=13.29 \AA ; \\ & \beta=106.36^{\circ} ; \quad \mathrm{Z}=2 ; \quad \mathrm{P}=21 / \mathrm{c} \end{aligned}$
$2(\mathrm{MePhN})_{2} \mathrm{CO}$	Cl	$\begin{aligned} & a=14.01, \quad b=19.33, \quad c=14.448 ; \\ & \beta=119.28^{\circ} ; \quad z=4 ; \quad P 21 / n \end{aligned}$
3* (MePhN) ${ }_{2} \mathrm{CO}$	Cl	$\begin{aligned} & \mathrm{a}=15.87, \mathrm{~b}=13.21, \mathrm{c}=15.76 \AA ; \\ & \mathrm{Z}=4 ; \mathrm{Pna2}_{1} \end{aligned}$
4 (MePhN) ${ }_{2} \mathrm{CO}$	Br	$\begin{aligned} & a=14.39, b=19.85, c=24.71 \stackrel{\circ}{\mathrm{~A}} \\ & \mathrm{Z}=8 \text {; Fdad } \end{aligned}$
$5^{* *}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}\right){ }_{3} \mathrm{PO}$	Cl	$\begin{aligned} & a=17.03, b=11.71, c=18.21 \AA ; \\ & \beta=109.2^{\circ} ; \quad \mathrm{Z}=4 ; \mathrm{C} / \mathrm{C} \end{aligned}$
$6 \mathrm{Ph}_{3} \mathrm{AsO}$	Br	$\begin{aligned} & a=10.24, b=15.79, \quad c=12.19 \AA \\ & S=100.94^{\circ} ; \quad Z=2 ; \quad \mathrm{F} 21 \end{aligned}$

*polymorph of 2
**pyrrolidyl
08. 2-29 $\mathrm{Pb}_{8}\left[\mathrm{O}_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{Si}_{4} \mathrm{O}_{13}\right)\right]$, A NEW TETRASILICATE. By R. Fröhlich, Institut für Kristallographie, Universität, D-7500 Karlsruhe, Germany

In the system $\mathrm{PbO}-\mathrm{PbSO}_{4}-\mathrm{PbSiO}_{3}$ several ternary phases exist; the compound $8 \mathrm{PbO} \cdot \mathrm{SO}_{3} \cdot 4 \mathrm{SiO}_{2}$ melts congruently at $765^{\circ} \mathrm{C}$ and shows no phase transitions (Billhardt, thesis, Karlsruhe, 1763).
Single crystals can be prepared by slow cooling from $800^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ and subsequent annealing at $600^{\circ} \mathrm{C}$. Crystal data: monoclinic space group $\mathrm{P} 2_{\mathrm{f}} / \mathrm{n}$; $\mathrm{a}=914 . \mathrm{O}(3), \mathrm{b}=1955.4(6), \mathrm{c}=1131.3(4) \mathrm{pm}$, $B=89.68(3)^{\circ} ; Z=4$. The structure was solved by Patterson and Fourier methods. The present value of $R=0.115$ for 2456 observed reflections is poor due to a preliminary absorption correction for the irregular shape of the crystal investigated. Further refinement is in progress. The basic building blocks of the structure are two tetrahedral $\left[\mathrm{Pb}_{4} \mathrm{O}\right]^{5+}$-units, a sulphate group, and the tetrasilicate anion shown below.

$\left[\mathrm{Si}_{4} \mathrm{O}_{13}\right]^{10^{-}}$-ion; Si drawn as thermal ellipsoids.
08. 2-30 THE CRYSTAL STRUCTURE OF $\mathrm{Zn}_{2} \mathrm{Ti}_{18} \mathrm{~S}_{32}$

By I. Kawada, M. Onoda and M. Saeki, National Institute for Research in Inorganic Materials, Sakura-mura, Ibaraki-ken 305, Japan.

Expecting tetrahedral coordination of metalsulfur in M-Ti-S system (M=metal), we have synthesized a new phase of $\mathrm{Zn}_{2} \mathrm{Ti} \mathrm{g}^{\mathrm{S}} 32$. (M. Saeki and M. Onoda, Chem. Lett. $1329^{\circ} 38^{\circ} 8_{2}$).

Obtained specimen was in powder form of dark gray color. 69 independent powder diffraction data were collected by an X-ray powder diffractometer using Cu- and Mo-target. Crystal system is cubic; $a=9.843 \mathrm{~A}$. Taking no account of 2 very diffuse reflections, space group is Fd3m - 0 .

Crystal structure was solved by crystal chemical considerations. The structure consists fundamentally of cubic closest packing of sulfur atoms. 16 Ti atoms occupy octahedral sites (Ti (1)) and 2 Ti atoms occupy statistically another l6 octahedral sites (Ti(2)). 2 zn atoms occupy statistically 8 tetrahedral sites which are surrounded only by Ti (2) and S. (Table 1.). Considering very short distance between Zn and Ti(2) (2.13 A), it is probable that Zn and $\mathrm{Ti}(2)$ do not simultaneously coexist at the nearest positions. If one takesaccount of the existence of diffuse reflections (e.g. 200 etc.), more detailed feature of the structure wili be clarified.

| Table | m | x | y | z | B |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |

Zn	$8(\mathrm{a})$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$
$\mathrm{Ti}(1)$	$16(\mathrm{a})$	1	$1 / 2$	$1 / 2$	$1 / 2$

$\mathrm{Ti}(1)$	$16(\mathrm{~d})$	1	$1 / 2$	$1 / 2$	$1 / 2$
$\mathrm{Ti}(2)$	$16(\mathrm{c})$	$1 / 8$	0	0	0

$\begin{array}{lllllll}\mathrm{S} & 32(e) & 1 & 0.2504 & 0.2504 & 0.2504 & 0.92\end{array}$ number of reflections: 67, $\mathrm{R}=0.0695$.

