08.2-44 THE CRYSTAL STRUCTURE OF IRON(II)-DI-HYDROGEN PHOSPHATE DIHYDRATE (Fe(H₂PO₄)₂·2H₂O). By W.Guse, K.-H.Klaska, H.Saalfeld, G.Adiwidjaja. Mineralogisch-Petrographisches Institut der Universität Hamburg, 2 Hamburg 13, W.-Germany.

Single crystals of the title compound were grown from the solution. The crystal structure was determined by X-ray diffraction. Fe($\rm H_2PO_4$) $_2\cdot \rm 2H_2O$ crystallizes in the monoclinic space group P2 $_1$ /m with two formula units per unit cell, of which dimensions are: a=7,297 Å, b=9,925 Å, c=5,337 Å, b=95,13°; d $_{\rm m}=2,43$ g/cm³, d $_{\rm cal}=2,46$ g/cm³. The structure was refined with 1034 observed reflections to R=0,018. Corrections were made for absorption and extinction. Atomic coordinates, anisotropic thermal parameters, bond lengths and bond angles will be presented. The structure of Fe($\rm H_2PO_4$) $_2\cdot \rm 2H_2O$ contains layers parallel (101), which consist of distorted FeO6-ctahedra (Fe(40+2O $_{\rm w}$)) and PO4-tetrahedra (P(O2+2O $_{\rm H}$)). The connection between the corner sharing octahedra and tetrahedra is given by the two tetrahedra oxygen atoms(O2). A report upon structural details of the isotype compound Cd($\rm H_2PO_4$) $_2\cdot \rm 2H_2O$ was given by M.T. Averbuch-Pouchot et al. (Bull.Soc.fr.Minéral.Cristallogr.(1973),96,278) without the consideration of the hydrogen atoms. The results of this paper include the arrangement of the hydrogen atoms solved by a Fourier-

08.2-45 DODECAHEDRAL AND SQUARE ANTIPRISMATIC 8-COORDINATION IN THREE NEW OCTACYANOMOLYBDATES (IV). By W. Meske and D. Babel, Sonderforschungsbereich 127 and Fachbereich Chemie der Philipps-Universität, Marburg, Germany

difference synthesis.

The crystal structures of the following compounds were determined:

The two other compounds provide new examples of approximate square antiprismatic coordination, only found in $\mathrm{Cd_2Mo(CN)_8\cdot 2N_2H_4\cdot 4H_20}$ hitherto (J. Chojnacki et al., Roczniki Chem. (1969) 43, 273).

In the three new structures the Mo-C distances vary but slightly around the average of 2.165 Å, which is the same within $^\pm$ 0.005 Å in all three compounds. The structural relations and cation coordinations of octacyanomolybdates are discussed.

08.2—46 THE CRYSTAL STRUCTURES OF BaCdGaF₇ AND BaCaGaF₇, SHOWING THE INFLUENCE OF INCREASING M(II)ION SIZE IN COMPOUNDS BaM^{II}M^{III}F₇. By H. Holler and D. Babel, Sonderforschungsbereich 127 and Fachbereich Chemie der Philipps-Universität Marburg, Germany

Two new structure types of compounds ${\rm BaM}^{II}{\rm M}^{III}{\rm F}_7$ have been determined and refined to R \approx 0.03 (using about 1800 reflections):

β(⁰) S.G. c(pm) b(pm) c(pm) BaCdGaF₇ C2/c 8 1389.6 535.4 1495.o BaCaGaF₇ P2/n 539.0 541.0 1897.8 92.33

Contrary to the framework structures of BaMnFeF $_7$ (H. Holler et ał., J. Solid State Chem. (1981) 39, 345) and HT-BaZnFeF $_7$ (Z. anorg. allg. Chem. (1982) $\underline{491}$, 137), in which all M(II) and M(III)ions are octahedrally coordinated, the above compounds have layer structures and exhibit distorted square antiprismatic 8-coordination for half the M(II)ions in BaCdGaF $_7$ (H. Holler et al., Rev.

Chim. Miner. (1984), in press), and all of them in $BaCaGaF_7$. The resulting average distances (pm) are:

C.N. in (): Ba-F(12) Ga-F(6) M-F(6) M-F(8)
BaCdGaF₇ 290.7 188.8 222.4 237.2
BaCaGaF₇ 289.4 187.8 - 236.3

The lattice constants and results from additional investigations (structure determinations, high pressure work, EPR and Mossbauer spectra) on isostructural compounds are given. The structural relations among heptafluorodimetallates are discussed.

08.2-47 ORTHORHOMBIC $KCuPO_4$: SYNTHESIS AND CRYSTAL STRUCTURE. By H. Effenberger, Institut für Mineralogie und Kristallographie, Universität Wien, Vienna, Austria.

Crystals of the orthorhombic phase of KCuPO $_4$ were synthesized from KH $_2$ PO $_4$ +KNO $_3$ +Cu under hydrothermal conditions at 493 K. The crystal structure was determined from 1285 unique X-ray data (two circle diffractometer) and refined to R = 0.031 in space group Pbca with a = 17.94(2) Å, b = 6.742(6) Å and c = 6.795(6) Å by Z = 8.

The Cu atom is coordinated by four 0 atoms with a mean Cu-0 distance of 1.950 Å, a fifth 0 atom with Cu-0 = 2.506 Å completes the coordination figure. The phosphate tetrahedron is characterized by distinct P-0 distances of 1.503, 1.546, 1.555 and 1.591 Å due to the different coordination of the oxygen atoms.

The Cu polyhedron shares one 0 - 0 edge with a phosphate tetrahedron. The connection of these structure units over common oxygen atom corners results in $\stackrel{2}{\sim}$ [CuPO $_4$] 1 sheets parallel (100) as known from KCuPO $_4$.H $_2$ O [Brunel-Laügt & Tordjman (1976), Acta Cryst. B32, 203].

The K atom is irregularly coordinated by seven O atoms: six K-O bonds lie within one sheet; the seventh K-O bond is the only conjunction of adjacent sheets. This is in agreement with the good cleavage parallel (100). Contrary the high temperature phase of KCuPO4 (monoclinic) repre-

sents a network type structure [Shoemaker, Kostiner & Anderson (1980), Z. Krist. 152, 371].