08．2－44 THE CRYSTAL STRUCTURE OF IRON（II）－DI－ HYDROGEN PHOSPHATE DIHYDRATE（ $\left.\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ ． By W．Guse，K．－H．Klaska，H．Saalfeld，G．Adifindaja． Mineralogisch－Petrographisches Institut der Universität Hamburg， 2 Hamburg 13，W．－Germany．

Single crystals of the title compound were grown from the solution．The crystal structure was de－ termined by X－ray diffraction．Fe $\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right){ }_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$ with two formula units per unit cell，of which dimensions are：$a=7,297 \AA, b=9,925 \AA, c=5,337 \AA$, $\mathrm{B}=95,13^{\circ} ; \mathrm{C}_{\mathrm{m}}=2,43 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{~d}_{\mathrm{cal}}=2,46 \mathrm{~g} / \mathrm{cm}^{3}$ ．The structure was refined with 1034 observed reflec－ tions to $R=0,018$ ．Corrections were made for $a b-$ sorption and extinction．Atomic coordinates， anisotropic thermal parameters，bond lengths and bond angles will be presented．
The structure of $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains layers parallel（101），which consist of distorted $\mathrm{FeO}_{6}-$ octahedra（ $\mathrm{Fe}\left(40 \div 2 \mathrm{O}_{\mathrm{W}}\right.$ ））and PO_{4}－tetrahedra $\left(\mathrm{P}\left(\mathrm{O}_{2}+2 \mathrm{O}_{\mathrm{H}}\right)\right)$ ．The connection between the corner sharing octahedra and tetrahedra is given by the two tetrahedra oxygen atoms $\left(\mathrm{O}_{2}\right)$ ．
A report upon structural details of the isotype compound $\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was given by M．T．Aver－ buch－Pouchot et al．（Bull．Soc．fr．Minéral．Cristal－ logr．（1973），96，278）without the consideration of the hydrogen atoms．
The results of this paper include the arrange－ ment of the hydrogen atoms solved by a Fourier－ difference synthesis．

08．2－45 DODECAHEDRAL AND SQUURE ANTIPRISMATIC 8－COOR－ DINATION IN THREE NEW OCTACYANOMOLYBDATES（IV）．
By W．Meske and D．Babel，Sonderforschungsbereich 127 and Fachbereich Chemie der Philipps－Universität，Mar－ burg，Germany
The crystal structures of the following compounds were determined：
$\left(\mathrm{NMe}_{4}\right)_{3} \mathrm{LiMo}(\mathrm{CN})_{8} \cdot 3,5 \mathrm{H}_{2} \mathrm{O}, \mathrm{P} 42_{1} \mathrm{~m}, \mathrm{Z}=4, \mathrm{R}_{\mathrm{g}}=0.046$（1862 hkl） $a=17.075 \AA, \quad c=10.548 \AA, \quad V=3075.3 \AA^{3}$
$\mathrm{Cs}_{7} \mathrm{Na}\left(\mathrm{Mo}(\mathrm{CN})_{8}\right)_{2} \cdot 4,17 \mathrm{H}_{2} \mathrm{O}, I 4_{1} / \mathrm{a}, \mathrm{Z}=8, \mathrm{R}_{\mathrm{g}}=0.036(3100 \mathrm{hkl})$ $a=15.479$ R，$\quad c=32.546 \AA, \quad V=7798.0 \AA^{3}$.
$\mathrm{Tl}_{4} \mathrm{Mo}(\mathrm{CN})_{8}, \quad \mathrm{C} 2 / \mathrm{c}, \quad \mathrm{Z}=8, \mathrm{R}_{\mathrm{g}}=0.049(1749 \mathrm{hkT})$ $a=30.877, b=7.348, c=16.126 \AA, \beta=121.0^{\circ}, V=3136.1 \AA^{3}$
Approximate dodecahedral geometry of the $\mathrm{Mo}(\mathrm{CN})_{8}^{4-}$ group， as reported for most octacyanomolybdates（IV）（P．M．Kier－ nan and W．P．Griffith，Inorg．Nucl．Chem．Letters（1076）
12，377，S．S．Basson et al．，Acta Cryst．（1980）B36，
2025 and inorg．Chira．Acta（1980）44，L99），is observed also in $\left(\mathrm{NM}_{4}\right)_{3} \mathrm{LiMO}(\mathrm{CN})_{8} \cdot 3,5 \mathrm{H}_{2} \mathrm{O}$ ．

The two other compounds provide new examples of approxi－ mate square antiprismatic coordination，only found in $\mathrm{Cd}_{2} \mathrm{Mo}(\mathrm{CN})_{8} \cdot 2 \mathrm{~N}_{2} \mathrm{H}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ hitherto（J．Chojnacki et al．， Roczniki Chem．（1969）43，273）．
In the three new structures the Mo－C distances vary but slightly around the average of 2.165 R，which is the same within ± 0.005 思 in all three compounds．The struc tural relations and cation coordinations of octacyano－ molybdates are discussed．

08．2－46 THE CRYSTAL STRUCTURES OF $\mathrm{BaCdGaF}_{7}$ AND $\mathrm{BaCaGaF}_{7}$ ，SHOWING THE INFLUENCE OF INCREASING M（II）ION SIZE IN COMPOUNDS BaM ${ }^{I I} M^{I I I} F_{7}$ ．By H．Holler and D．Babel，Sonderforschungsbereich 127 and Fachbereich Chemie der Philipps－Universität Marburg，Germany
Two new structure types of compounds $\mathrm{BaM}^{I I_{M} \mathrm{III}_{F_{7}} \text { have }}$ been determined and refined to $R \approx 0.03$（using about 1800 reflections）：

	S．G．	Z	$c(p m)$	$b(p m)$	$c(p m)$	$B\left(^{\circ}\right)$
BaCdGaF $_{7}$	$\mathrm{C} 2 / \mathrm{c}$	8	1389.6	535.4	1495.0	91.55
$\mathrm{BaCaGaF}_{7}$	$\mathrm{P} 2 / \mathrm{n}$	4	539.0	541.0	1897.8	92.33

Contrary to the framework structures of $\mathrm{BaMnFeF}_{7}$（H． Holler et a7．，J．Solid State Chem．（1981）39，345）and HT－BaZnFeF 7 （Z．anorg．allg．Chem．（1982）491，137），in which all M（II）and M（III）ions are octahedrally coordi－ nated，the above compounds have layer structures and ex－ hibit distorted square antiprismatic 8－coordination for half the M（II）ions in $\mathrm{BaCdGaF}_{7}$（H．Holler et al．，Rev． Chim．Miner．（1984），in press），and all of them in BaCaGaF 7 ．The resulting average distances（ pm ）are：
C．N．in（）：Ba－F（12）Ga－F（6）M－F（6）M－F（8）

$\mathrm{BaCdGaF}_{7}$	290.7	188.8	222.4	237.2

$\mathrm{BaCaGaF}_{7}$	289.4	187.8	-	236.3

The lattice constants and results from additional in－ vestigations（structure determinations，high pressure work，EPR and Mössbauer spectra）on isostructural com－ pounds are given．The structural relations among hepta－ fluorodimetallates are discussed．

08．2－47 ORTHORHOMBIC KCuPO_{4} ：SYNTHESIS AND CRYSTAL STRUCTURE．By H ．Effenberger，Institut fur Mineralogie und Kpistallographie，Universi－ tät Wien，Vienna，Austria．

Crystals of the orthorhombic phase of KCuPO_{4} we－ re synthesized from $\mathrm{KH}_{2} \mathrm{PO}_{4}+\mathrm{KNO}_{3}+\mathrm{Cu}$ under hydro－ thermal conditions at 493 K ．The crystal struc－ ture was determined from 1285 unique X－ray data （two circle diffractometer）and refined to $R=$ 0.031 in space group Pbca with a $=17.94(2)$ A． $b=6.742(6) \&$ and $c=6.795(6)$ 苗 by $Z=8$ ．

The Cu atom is coordinated by four 0 atoms with mean Cu－0 distance of 1.950 民，a fifth 0 atom with $\mathrm{Cu}-0=2.506 \mathrm{R}$ completes the coordination figure．The phosphate tetrahedron is characteri－ zed by distinct P－0 distances of 1．503，1．546， 1.555 and $1.591 \&$ due to the different coordina－ tion of the oxygen atoms．
The Cu polyhedron shares one $0-0$ edge with a phosphate tetrahedron．The connection of these structure units over common oxygen atom corners results in $2\left[\mathrm{CuPO}_{4}\right]^{1-}$ sheets parallel（100）as known from $\mathrm{KCuPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$［Brunez－Laugt \＆Tordjman （1976），Acta Cryst．B32，203］．
The K atom is irregularly coordinated by seven O atoms：six $k-0$ bonds lie within one sheet；the seventh $k-0$ bond is the only conjunction of ad－ jacent sheets．This is in agreement with the good cleavage parallel（100）．Contrary the high temperature phase of KCuPO_{4}（monoclinic）repre－ pents a network type structure［Shoemaker，Kos－ tiner \＆Anderson（1980），2．Krist．152．371I．

