08.2-53 SYNTHESES AND CPYSTAL STPUCTUPES OF ANILINIUM β-OCTAMOLYEDATES: Ey J. M. Gutiérrez-Zorrilla, P. Romén ${ }^{\text {ºn }}$, C. EstebanCalderón, M, Martínez-Ripolib and S. GarcíaQlancob . a) Dept. Química (Inoreánica) Uniu. del País Uascor Aptdo. B44, Bilbao, Spain. b) Dept. Rayos $X_{\text {r }}$ Instituto Rocasolano CSIC, Serrano 119. Madrid-G; Spain.

Anilinium β-octanolybdates have been prepared in acidic aqueous solutions ($\mathrm{PH}=2.5$) throush:

```
MOO
```

$\mathrm{B}=\mathrm{aniline}$ (i), N-methrlaniline (ii), $\mathrm{N}, \mathrm{N}-$ dimethylaniline (iii), N-ethylaniline (iv) and N.N-diethylaniline (v).

Sinale crystals of ell these compounds haue been obtaimed.

Crystal data For (i) are: ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{Mo}_{8} \mathrm{O}_{26}$. $\mathrm{H}_{2} \mathrm{O}$ $a=10.007(1), b=8.014(2)=0=14.645(8) \mathrm{A}$. $\alpha=109.81(3), \beta=108.59(4), \gamma=85.44(2)^{\circ}$, $U=1052.9(\mathrm{G}) \mathrm{A}^{3}, Z=1, \mathrm{P} \overrightarrow{1}+\mathrm{DO}=2.49, \mathrm{DK}=$ $2.49 \mathrm{~cm} 3 \mathrm{C} R=0.025, W R=0.031$ for 5297 abseryed reflerions. The structure is built up of $\beta-\left(\operatorname{Mog}_{8} \square_{26}\right) 4-$ isolated anions linked to the anilinium cations ans water molecules by hydrogen bonds of type N-H... O and $\mathrm{O}-\mathrm{H} . . \mathrm{O}$.

Thermal decomposition of (i) occurs in three stefs the final product beins MoOz.

Crystal structures of (ii) (iii), (iv) and (v) are in prosress.
08. 2-54 CRYSTAI STRUCTURE OF RUTHENIUM TRIPHOSPHIDE By W. Honle and H.G. von Schnering, MPi-Fkf, Stuttgart, FRG In the binary system $R u / P$ the compounds $R u{ }_{2} P$, RuP, RuP ${ }_{2}$, and RuP_{4} are well chaxacterized (B.Aronsson, T.Lundström and S.Rundquist: Borides, Silicides and Phosphides, Methuen, London (1965); W.Jeitschko and D.J.Braun, Acta Crystallogr. B 33.3401(1977)). The preparation of phosphorus rich transition metal phosphides as synthones for ternary superconducting compounds vields from tin melt the new compound RuP_{3}. Crystal structure determination: single crystal, 4-circle diffractometer, $1107 \mathrm{hkl}, \mathrm{R}=3.9 \mathrm{~s}$, space group $P \overline{1} ; Z=4 ; \quad a=592.5$ (3) pm; $b=821.3(6) \mathrm{pm} ;$ $C=586.6(3) \mathrm{pm} ; ~ \alpha=112.35(4)^{\circ} ; \beta=107.41(4)^{\circ} ; \gamma=98.19(5)^{\circ}$.

		y	z	$\mathrm{U}(\mathrm{eq})\left[\mathrm{pm}^{2}\right]$
Atom	x	y		
Ru1	$0.06941(9)$	$0.37246(8)$	$0.6002(1)$	$60(6)$
Ru2	$0.36664(9)$	$-0.04374(8)$	$-0.7667(1)$	$59(5)$
P1	$0.2179(3)$	$0.3433(3)$	$0.0038(4)$	$82(8)$
P2	$0.6626(3)$	$0.2346(3)$	$0.5558(4)$	$69(8)$
P3	$0.0528(3)$	$0.0594(3)$	$0.3767(4)$	$91(9)$
P4	$0.3168(3)$	$0.0860(3)$	$-0.0661(4)$	$75(8)$
P5	$0.4703(3)$	$0.4468(3)$	$0.6411(4)$	$81(9)$
P6	$0.9175(3)$	$0.3194(3)$	$0.1478(4)$	$77(9)$

Main structural units are edge sharing Rup 6 octahedra forming dinuclear $\mathrm{Ru}_{2} \mathrm{P}_{10}$ units (Fig.). These units are condensed into chains via trans edges along the c-direction. A second kind of these units connects the chains via adjacent corners. The phosphorus atom network is
built up of $\infty_{\infty}\left[P_{6}^{6-}\right]$ puckered branched chains, containing formaily charged P Atoms $P^{\circ}(1,5), P^{-}(3,4)$, and P^{2-} $(2,6)$. Remarkable feature of the structure is the short Ru-Ru bonds (279.5 and 286.9 pm), which are in agreement with the diamagnetism and the semiconducting properties of the compound. The P-P distances are in the range of 218 to 223 pm . For the Ru-P distances of. the figure.

RuP $_{3}$: building units
Ru atoms dotted, P atoms open circles. The numbers in the circles correspond to the atomic label. The Ru-Ru bonds are indicated by a bold line.

08.2-55 THE CRYSTAL STRUCTURE OF THE TECHNETIUM POLYARSENIDE $\mathrm{TC}_{2} \mathrm{As}_{3}$. By L.H. Dietrich and W. Jeitschiko, Anor-ganisch-Chemisches Institut, Universität Münster, D-4400 Münster, West Germany.

The crystal structure of the new compound $\mathrm{Tc}_{2} \mathrm{As}_{3}$ has been determined from single crystal x ray data. It has triclinic symmetry, space group $\overline{1} \overline{1}$. The lattice constants were refined from Guinier powder data: $a=6.575(2) \AA$, $b=6.631(2) \AA, c=8.019(3) \AA, a=95.70(2)^{\circ}, B=$ $101.99(2)^{\circ}, \gamma=104.28(2)^{\circ}, v=327.2 \AA^{3}$ with $z=4$ formula units per cell. The structure was determined by direct and Fourier methods and refined to an R value of 0.051 for 92 variable parameters and 2323 unique structure factors. The Tc atoms are all in distorted octahedral coordination of As atoms with Tc-As distances varying between 2.44 and 2.70 A . All As atoms have four Tc neighbors. For two of the crystallographically independent As sites these four $T C$ atoms form a very distorted tetrahedron with bond angles varying between 70 and 138°. The other four As atoms have one additional As neighbor each at distances varying between 2.45 and $2.75 \AA$. The four Tc neighbors of the As atoms with the short As-As bond of 2.45 A form the (distorted) square base of a pyramid with the As neighbor at the apex. Thus one may assume that one a state of these pentacoordinated As atoms is participating in the bonding ("spla hybrid"). If two-electron bonds are assumed for all short near neighbor interactions the Tc atoms obtain approximately a^{2} systems. This also depends on how one counts the As-As interactions of 2.65 and 2.75 A . In addition to the bonding interactions described above, considerable Tc-Tc bonding may be assumed from the way the coordination polyhedra are distorted. Each Tc atom has four Tc neighbors at distances ranging from 2.84 to 3.17 A. These Tc-Tc bonds may be considered as the reason for the small "tetrahedral" bond angles Tc-As-Tc of down to 70° mentioned above.

