08.3-3 $\quad X$-RAY INVESTIGATION OF CRYSTALLIZATION AND THERMAL EXPANSION OF AuSn $\mathrm{A}_{4}, \mathrm{PdSn}_{4}$ AND $\mathrm{PtSn} n_{4}$. By R. Kubiak and M. Wołcyrz, Institute for Low Temperature and Structure Research, Polish Academy of Sciences Wrocław, Poland.
Isomorphic crystal structures of $\mathrm{AuSn}_{4}, \mathrm{PdSn}_{4}$ and PtSn_{4} are described by the orthorombic space group Aab2
(Schubert \& Roesler, Z. Metallkd. (1950) 41,298; Kubiak \& Wotcyrz, J. Less-Comm. Met. (1984) 97,265). The in-vestigation of crystallization process of AuSnu (Kublak, J. Less-Comm. Met. (1901) 80, P53) reveaied the existence of the relationship between the speed of crystallization and the formation of superstructure (with 6-fold extension of e-parameter).
In the present work the single crystals of all the three compounds were obtained in order:
(i) to check whether crystallization process of PdSn_{4} and PtSn_{4} can also lead to the superstructure formation, (ii) to compare the thermal expansion of all three compounds.
The results are following:
(i) Contrary to AuSn_{4}, attempts to obtain PdSn_{4} and PtSn_{4} single crystals from stoichiometric alloys were unsuccessful. Therefore, single crystals of PdSn_{4} and PtSn_{4} were obtained by the fast cooling of the melted mixtures of the pure metals with the excess of tin, which then was etched. As a result of this procedure, single crystals were obtained with a shape of rectangular plates. X-ray photographs were taken but gave no evidence of the superstructure.
(ii) Thermal expansion coefficientswere calculated on the basis of presice lattice parameters measurements performed with a Bond-type diffractometer (tukaszewicz et al., Krist. Tech (1978) 13, 561) equiped with the high- and low-temperature attachment. Lattice parameters are almost linear vs. temperature. Numerical values of the linear (α_{i}) and volume (β_{v}) thermal expansion coefficients calculated at $T=298 \mathrm{~K}$ are presented below.

	lattice param.	temp. range	a_{i}	β_{v}	
	at 298 K	$\mathrm{~T}[\mathrm{~K}]$	$\left[10^{-5} \mathrm{~K}^{-1}\right]\left[10^{-5} \mathrm{~K}^{-1}\right]$		
	a	$6.5124(1)$		2.292	
AuSn_{4}	b	$6.5162(1)$	$300-473$	2.212	5.904
	c	$11.7065(1)$		1.400	
	a	$6.3888(1)$		1.281	
PdSn_{4}	b	$6.415(1)$	$194-500$	1.292	5.391
	c	$11.4462(2)$		2.818	
	a	$6.3823(1)$		1.265	
PtSn_{4}	b	$6.4190(1)$	$295-499$	1.241	4.920
	c	$11.3666(2)$		2.414	

The results presented above show distinctly different behaviour of AuSn 4 in comparison with the two other compounds. For AuSn_{4} the difference between the lattice parameters a and b is much less than for PdSn_{4} and PtSn_{4}. Therefore in AuSn stacking faults can appear relatively easy and possibility of superstructure formation does exist. This leads probably also to the different character of the thermal expansion of AuSn4.
As it was stated, in the case of the fast crystallization AuSn_{4} shows superstructure which disappeares when the sample is heated and homogenized. This phenomenon can be a reason of different superconduction critical temperatures measured for the thin film of AuSn_{4} obtained by sputtering of tin and gold on the cooled substrate (Klokholm \& Chion, Acta Met. (1966) 14,565) and for the bulk and homogenized sample (Raub, Z. Metallkd. (1964) 55, 195).
08.3-4 ANOMALOUS SCATTERING PHENOMENA APPLIED TO THE STUDY OF SHORT-RANGE ORDER IN TERNARY ALLOYS.
By H. Iwasaki, S. Hashimoto and Y. Watanabe, The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai,
J. Harada, K. Ohshima and M. Sakata, Faculty of Engineering, Nagova University, Nagoya, H. Terauchi, Faculty of Science, Kwansei Gakuin University, Nishinomiya,
T. Matsushita, T. Nakajima and T. Ishikawa, KEK, National Laboratory for High Energy physics, Ibaraki, Japan.

Intensity measurement of diffuse scattering from a short-range-ordered Cu-20at?Ni-24at\% Zn alloy single crystal has been carried out using a monochromatic radiation selected from a band of continuous spectrum of synchrotron orbital radiation now available at KEK. A simple mathematical treatment of the three set's of intensity data obtained with the three wavelengths lying near the absorption edges of the component atoms enables one to divide the observed intensity into the partial intensitie $\$$ arising from the spatial correlation of the three different pairs of atoms, Cu-Ni, Ni-Zn and $\mathrm{Zn}-\mathrm{Cu}$. It has been found that a specific pair of atoms in ternary alloy does not behave in the same manner as it does in binary alloy. Attempts have also been made to divide the diffuse scattering intensity around a fundamental reflection into components arising from displacements of atoms and from clustering of atoms.
08. 3-5 THE STRUCTURE OF THE TERNARY CARBIDE $\mathrm{Ho}_{2} \mathrm{Cr}_{2} \mathrm{C}_{3}$. By R.K. Behrens and W. Jeitschko, An-organisch-Chemisches Institut, Universität Münster, D-4400 Münster, West Germany.

The new compounds $\mathrm{R}_{2} \mathrm{Cr}_{2} \mathrm{C}_{3}$ with $\mathrm{R}=\mathrm{Y}, \mathrm{Sm}, \mathrm{Gd}$, Tb, Dy, Ho, Er, Tm , Lu were prepared by arc melting the stoichiometric mixtures of the elemental components and subsequent annealing at $900^{\circ} \mathrm{C}$. They crystallize with a new structure type which was determined from single crystal X ray data of $\mathrm{HO}_{2} \mathrm{Cr}_{2} \mathrm{C}_{3}$. It has monoclinic symmetry, space group $C 2 / \mathrm{m}$ and the lattice constants: $a=10.480(2) \AA, b=3.3623(5) \AA, c=$ $5.533(1) \AA, B=106.37(1) \circ, V=187.1 \AA^{3}, Z=$ 2. The least squares refinement resulted in a residual of $R=0.027$ for 24 variables and 739 independent F values. The structure may be derived from a body centered cubic metal lattice by distortion and ordering of the metal atoms (Fig. 1). One fourth of the (distorted) octahedral voids is filled with carbon atoms. The refinement of the occupancy factors of the two independent carbon positions resulted in almost the ideal values (occupancy parameters of $97 \pm$ 4 and $94 \neq 3 \%$. Each Ho atom is surrounded by 6 Ho (at distances from 3.36 to 3.59 凡), 5 Cr (3.00 to $3.15 \AA$) and five carbon atoms (2.41 to 2.63 A). The Cr atoms have coordination number 11 ($5 \mathrm{Ho}, 2 \mathrm{Cr}$, and 4 C atoms). The two different carbon atoms have $2 \mathrm{Cr}+4 \mathrm{Ho}$ and $3 \mathrm{Cr}+3$ Ho neighbors with Cr-C distances varying between 1.91 and $2.03 \AA$. The structure is closely related to that of orthorhombic UMOC_{2} (Cromer, Larson \& Roof, Acta Cryst. (1964) 17, 272), The latter structure can also be derived from a body centered cubic metal lattice by ordering of the metal atoms and filling (in this case one third) of the octahedral voids by carbon
atoms. However, besides the higher C content of UMOC_{2}, the C positions of $\mathrm{HO}_{2} \mathrm{Cr}_{2} \mathrm{C}_{3}$ do not all correspond to the occupied positions in UMOC_{2}, although the arrangements of the metal atoms correspond in the two structures. The compounds $\mathrm{U}_{2} \mathrm{MO}_{2} \mathrm{C}_{3}$ and $\mathrm{U}_{2} \mathrm{~W}_{2} \mathrm{C}_{3}$ are isotypic with $\mathrm{Ho}_{2} \mathrm{Cr}_{2} \mathrm{C}_{3}$. This also appears to be the case for the compound $P_{u W C}, 75$ (Ugajin, Abe, J. Nucl. Mater. (1973) 47, 117).

Fig. 1. Crystal structure of $\mathrm{HO}_{2} \mathrm{Cr}_{2} \mathrm{C}_{3}$. Atoms connected by thick and thin lines are at $y=0$ and $y=1 / 2$ respectively.
08.3-6 $\mathrm{Pr}_{2} \mathrm{Mn}_{17} \mathrm{C}_{3-x}$, A COMPLEX CARBIDE WITH FILLED $\mathrm{Th}_{2} \mathrm{Zn}_{17} 7$ STRUCTURE. By G. Block and W. Jeitschko, Anorganisch-Chemisches Institut, Universität Münster, D-4400 Münster, West Germany.
The title compound was prepared by reaction of the elemental components in a high frequency furnace with subsequent annealing at 800 C. It crystallizes with a rhombohedral cell, space group R3m and the hexagonal lattice constants: $a=8.8714(7) \AA, c=12.783(2) \AA, V=871.2 \AA \AA^{3}$, $z=3$. The structure was determined from single crystal X ray data and refined to a residual of $R=0.023$ for 25 variable parameters and 414 independent structure factors. The structure can be derived from that of $\mathrm{Th}_{2} \mathrm{Zn}_{17} 7$ (Makarov and Vinogradov, Sov. Phys. Crystallogr. (1956)1, 499) with the Pr and Mn positions corresponding to those of Th and Zn . The carbon atoms fill octahedral voids formed by a square of Mn atoms ($\mathrm{Mn}-\mathrm{C}$ distances of $1.94 \AA(2 x)$ and $1.95 \AA(2 x))$ and two Pr atoms at 2.57 \&. The ideal composition with all octahedral voids filled is represented by the formula $\mathrm{Pr}_{2} \mathrm{Mn}_{17} \mathrm{C}_{3}$. The refinement of the occupancy parameter of the carbon positions, however, showed that these positions are only occupied to 57 ± 3 \% in the crystal picked for the structure determination. The Pr atoms are situated in a coordination polyhedron formed by three carbon atoms at $2.57 \AA, 19 \mathrm{Mn}$ atoms (at distances varying between 3.19 and $3.43 \AA$) and one Pr atom at 3.95 A. The four crystallographically different Mn atoms have coordination numbers 12, 13 and 14 with zero or one C netghbor, one, two or three Pr neighbors and between 9 and 13 Mn neighbors (Fig. 1).

The new compound $\mathrm{La}_{2} \mathrm{Mn}_{17} \mathrm{C}_{3-x}$ is isotypic with $\mathrm{Pr}_{2} \mathrm{Mn}_{7} 7_{3} \mathrm{C}_{3-x}$. A compound reported by Stadelmaier and Park (Z. Metallk. (1981) 72, 417) with the composition $\mathrm{Gd}_{4} \mathrm{Fe}_{31} \mathrm{C}_{3}$ most likely is isotypic with $\mathrm{Pr}_{2} \mathrm{Mn}_{17} \mathrm{C}_{3-x}$. The structure will be discussed together with other recent examples of ternary carbides which can be derived from binary structure types by filling of interstitial voids.

Fig. 1. Coordination polyhedra in $\mathrm{Pr}_{2} \mathrm{Mn}_{17} \mathrm{C}_{3}-x$. Only one half of the structure between $z=0$ and $z=1 / 2$ is shown.
08. 3-7 TEMPERATURE DEPENDENCE OF THE LATTICE CONSTANTS AND THE CRYSTAL STRUCTURE OF Mn $1 \mathrm{I}_{\mathrm{G}} \mathrm{Ge}_{8}$ AT 295 K AND 116 K . By T. Ohba, N. Watanabe and Y. Komura, Faculty of Science, Hiroshima University, Naka-ku, Hiroshima, Japan.

Four intermetallic compounds were reported in Mn-Ge system according to Elliot. Among them $\mathrm{Mn}_{3} \mathrm{Ge}_{2}$ was found to be antiferromagnet at low temperature and it transforms to weak ferromagnet at 160 K , then changes to a paramagnet at 300 K [Zavadskii and Fakidov; Soviet Physics JETP 24, 887 (1967)].

Israiloff et al. [Monatsh. Chem. 105, 1387 (1974)] studied the crystal structure and concluded that $\mathrm{Mn}_{3} \mathrm{Ge}_{2}$ is isotypic with CrimGes by a comparison of the powder pattern. In this paper, the crystal structure of $\mathrm{Mn}_{1} \mathrm{Ge}_{8}$ is refined by a single crystal X-ray diffraction method at 295 K and 116 K . Crystal Data : Orthorhombic, Pnam, $a=13.214(2), b=15.880(3)$ and $c=5.0905(5) \AA, Z=4$ at 295 K .

The temperature dependence of the lattice constants is measured using a single crystal. Fig. I shows a curve for lattice constant a vs temperature for an example. A kink appears at the transition temperature (160 K). Kinks are also observed on curves for $b-$ and c-axis at the same temperature.

Fig. 1

