08.3-13 TERNARY LANTHANOID IRON AND COBALT PHOSPHIDES WITH THE NEW YCo₅P₃ TYPE STRUCTURE. By W. Jeitschko and U. Meisen, Anorganisch-Chemisches Institut, Universität Münster, D-4400 Münster, West Germany.

Crystals of the new compound YCo_5P_3 were prepared by the tin flux technique. Their structure was determined from X ray data and refined to a residual of R = 0.051 for 908 unique structure factors and 30 variable parameters.

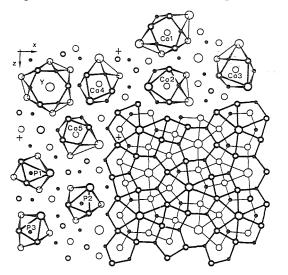


Fig. 1. Crystal structure and near-neighbor coordinations of YCo_5P_3 . Atoms connected by thin and thick lines are at y = 1/4 and 3/4 respectively. The coordination polyhedra all have mirror planes perpendicular to the projection direction.

It is of a new type (Fig. 1), space group Pnma, a 11.820(2) Å, b = 3.666(1) Å, c = 10.336(2) Å, V = 447.9 Å³, Z = 4. The compounds $LnCo_5P_3$ (with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), YFesP3 and LnFesP3 (with Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) are isotypic with YCo5P3. The structure of isotypic GdFe5P3 was also refined from single crystal X ray data: R = 0.063 for 30 variables and 693 F values. The YCo5P3 type structure belongs to a large family of structures with trigonal prismatic metal environment of the metalloid atoms (augmented usually by three additional atoms outside the rectangular faces of the prism). In Fig. 2 it is compared to its most closely related structures of LaCo5P3 (Davydov and Kuz'ma, Dopov. Akad. Nauk. Ukr. RSR Ser. A: Fiz. Mat. Tekh. Nauki (1981) p. 81) and UNi5Si3 with YNi5Si3 type (Aksel'rud, Yarovets, Bodak, Yarmolyuk and Gladyshevskii, Sov. Phys. Crystallogr. (1976) 21, 210). The similarities are not as great in the coordination polyhedra of the metal atoms. The Y atoms in YCo_5P_3 and YNi5Si3 have a coordination number of 18 whereas the La atoms in LaCo₅P₃ have coordination number 21.

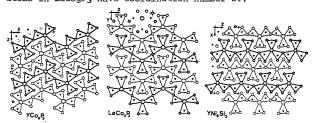
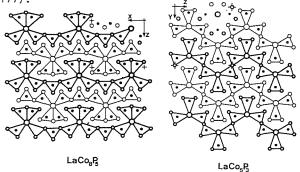
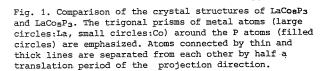




Fig. 2. Similarities of the structures of YCosP3, $LaCo_5P_3$ and YNi5Si3 (UNi5Si3 type). The trigonal prisms of metal atoms (large and small circles for the rare earth and transition metals respectively) around the metalloid atoms (black dots) are emphasized. Atoms connected by thin and thick lines are separated from each other by half a translation period of the projection direction. 08.3-14 CRYSTAL STRUCTURE OF LaCo₈P₅. By <u>U. Meisen</u> and W. Jeitschko, Anorganisch-Chemisches Institut, Universität Münster, D-4400 Münster, West Germany.

Single crystals of the new compound LaCo₈P₅ were grown by reaction of the elemental compo-Were grown by reaction of the elemental compo-nents in a tin flux. They have orthorhombic symmetry: a = 10.501(3) Å, b = 3.596(1) Å, c = 9.343(2) Å, V = 352.8 Å³, space group Pmmn, Z = 2. The structure was determined by direct methods and refined to a residual of R = 0.040 for 49 variable parameters and 927 unique F values. It belongs to a large family of structures of which the ternary equiatomic struc-tures of the Fe_2P and TiNiSi type may be considered as the most simple representatives. These structures are usually characterized by the arrangement of the coordination polyhedra of the metalloid atoms. These polyhedra consist always of trigonal prisms of metal atoms which are augmented by three additional atoms outside the rectangular faces of the prisms. In the structures with a metal:metalloid ratio of 2:1 (e.g. $LaCo_sP_3$) the trigonal prisms share only edges. In $LaCo_sP_5$ with a slightly lower metal content some of the prisms share also faces (Fig. 1). While the compounds with a metal: metalloid ratio of 2:1 have no metalloid--metalloid bonds, the lower metal content (9:5) of LaCo₈P₅ results in a short P-P distance of 2.48 Å, which is formed across the common face of the face sharing prisms. The La atoms have a large coordination number: 8 P (3.09 and 3.15 Å), 9 Co (from 3.08 to 3.34 Å) and 2 La at 3.60 Å. There are five different Co sites in the structure. In three of these the Co atoms have a coordination of 8 metal and 4 P atoms. These sites corresponds to the sites of the small transition metal atoms in the ternary Fe_2P and TiNiSi type structures. There it is sometimes called the tetrahedral site, because the four P neighbors form distorted tetrahedra. One Co atom has a coordination of 10 metal and 5 P atoms. The latter form a square pyramid. It corresponds to sites of the larger transition metals in the ternary Fe_2P and TiNiSi type structures. The thermal parameters of the Co atoms correlate with the coordination numbers: large thermal amplitudes are observed for sites with large coordination numbers. This is also the case in related structures as in Er₂CO₁₂P₇ and $\text{Er}_2\text{Ni}_{12}\text{P}_7$ (Jeitschko and Jaberg, Z. Anorg. Allg. Chem. (1980) 467, 95) and $\text{Nb}_6\text{Ni}_6\text{P}_9$ (Guérin, Potel, Sergent, J. Less-Common Met. (1981) 78, 177).

