08.3-15 THE NEW TERKARY INTGRMETALTIDE WIMH GIGANI UNIT CEILI Tb $117^{\mathrm{Fe}}{ }_{52} \mathrm{Ge}_{112^{\circ}}$ By ReIaBodek, E.I.Gladysheysky, V.Z.Pecharsky and PoK.Starodoob, Faculty of Chemistry, Iryov State Univer sity, Lvov, USSR。

Crystal structure of the new ternary compound Tb $117^{F e_{5} 2^{G e} 112}$ solyed by combined direct and Patterson methodes (SHELK-76, ZHISH) All calculations were performed on SM-4 mini-computea Adaptation of programs was done by V.K.Pecharsky, P.Yu,Zavalij, L.G.Akselrud, Yu.N.GIyn' and E.I.Gladyshevsky.
Unit cell is cubic: spegre Fm3m, $a=28.580(6) A$. Intensities (4775 non-equivalent, observed reflections) were measured on P3 NICOLET diffractometer. Final R-factors are 0.054 (isotropic) and 0.047 (anisotropic approximation). Iist of atomic parameters is given below.

Atom	Position	X	y	z
Tb1	$96 k$	0.1793	0.1793	0.4084
Tb2	$96 k$	0.1995	0.1995	0.0663
Tb3	$96 k$	0.0681	0.0681	0.1557
Tb4	$96 j$	0.2550	0.1036	0
Tb5	$48 i$	0.1158	0.1158	0.5
Tb6	$24 e$	0.3384	0	0
Tb7	$8 c$	0.25	0.25	0.25
Tb8	$4 a$	0	0	0
Fe1	$96 k$	0.1676	0.1676	0.2302
Fe2	$32 f$	0.3983	0.3983	0.3983
Fe3	$48 h$	0.0723	0.0723	0
Fe4	$32 x$	0.4503	0.4503	0.4503
Ge1	$48 h$	0.1447	0.1447	0
Ge2	$48 i$	0.2906	0.2906	0.5
Ge3	$24 e$	0.2150	0	0
Ge4	$32 i$	0.1464	0.1464	0.1464
Ge5	329	0.3088	0.3088	0.3088
Ge6	$96 k$	0.1071	0.1071	0.2423
Ge7	$24 e$	0.1152	0	0
Ge8	$48 g$	0.25	0.25	0.1395
Ge9	$96 k$	0.0738	0.0738	0.3228

Co-ordination polyhedra of small atoms (Fe and Ge) are distorted trigonal prisms, tetragonal antyprisms, cubooctahedra and icosahedra. The structure one can build from the polyhedra, mentioned above.
Authors thanks to Dr. Belsky V. K . for help in the experimental part of the present investigation.
08.3-16 THE CRYSTAL STRUCTURES OF THE RARE

EARTH BINARY GALIIDES. By E.I. Hladyshevsky, Ya.P.Yarmolyuk, Yu.N.Eryn', Chair of Inorganic Chemistry, Lvov State University, Ivov, USSR.

During the investigation of the phase equilibria in the ternary systems RE - Ga - 3d-tran sition metal we found 21 new binary gallides of rare earths. Their crystal structures have been studied by X-ray single crystal and powder methods. They belong to 5 structure types:

Compound	Structure type	Space group	a, ${ }^{\text {a }}$	$b, 8$	c, \AA
$\mathrm{Tm}_{3} \mathrm{Ga}_{5}$	$\mathrm{Tm}_{3} \mathrm{Ga}_{5}$	Pnma	6.001	9.651	11.293
$\mathrm{Sm}_{9} \mathrm{Ga}_{4}$	$\mathrm{Sm}_{9} \mathrm{Ga}_{4}$	I4/m	11.940		5.081
$\mathrm{Gd}_{3} \mathrm{Ga}_{2}$	$\mathrm{Ga}_{3} \mathrm{Ga}_{2}$	I $4 / \mathrm{mcm}$	11.666		15.061
$\mathrm{Ho}_{5} \mathrm{Ga}_{3}$	$\mathrm{Cr}_{5} \mathrm{~B}_{3}$	工4/mem	7.590		14.001
YGa_{6}	PuGa_{6}	P4/nbm	5.947		7.549

The isotypic to $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$ compounds were obteined in the systems with Y, Tb , Dy, Ho, Er, Lu. The $T \mathrm{~m}_{3} \mathrm{Ga}_{5}$ structure is closely related to $\mathrm{Bi}_{3} \mathrm{Y}_{5}$, $\beta-\mathrm{Sb}_{3} \mathrm{Yb}_{5}, \mathrm{UPb}_{2} \mathrm{Se}_{5}$ (these four structures relate to one another due to small deformation) and together with $\mathrm{Pu}_{3} \mathrm{~Pa}_{5}$ formes the new series of homogeneous linear structures. The struc tures of this series have the symmetry of 6 orthorhombic and monoclinic space groups: Cmem, Pnma, Pma2, Pmn $1_{1}, P 2_{1} / m, P m=T h e ~ S m 9 a_{4}$ structure is the substructure to $\mathrm{Nb}_{5} \mathrm{Cu}_{4} \mathrm{Si}_{4}$. The unit cell of $\mathrm{Sm}_{9} \mathrm{Ga}_{4}$ contains the big details of closest packed structure of AuCu_{3} type. The isotypic phases occur with Pr and Nd. The full structure determination of $\mathrm{Gd}_{3} \mathrm{Ga}_{2}$ establishes that its real unit cell has four times greater cell volume, as has been reported in former publications. The $\mathrm{Gd}_{3} \mathrm{Ga}_{2}$ structure is built from some fragments as $\mathrm{Pu}_{31} \mathrm{Sn}_{20}$, $\mathrm{Y}_{3} \mathrm{Rh}_{2}, \mathrm{~W}_{5} \mathrm{Si}_{3}, \mathrm{Sm}_{26}(\mathrm{Ga}, \mathrm{Co})_{17}$. The isotypic phases have been found in the systems with Nd, $\mathrm{Sm}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Y}$. The formerly unknown phases with $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ structure type are the high-temperature modifications of $\mathrm{Ho}_{5} \mathrm{Ga}_{3}$ and $\mathrm{Er}_{5} \mathrm{Ga}_{3}$ compounds existing at $600^{\circ} \mathrm{C}$. The YGa_{6} compound finishes the series of rare earth hexagallides with PuGa_{6} structure type. The PuGa 6 atructure is related to a well known structure AlB_{2} by means of double substitution of the part of R atoms by the pairs of X atoms (R and X are atoms with different radii: $r_{R} r_{X}$. The rare earth atoms in the described structures have in most cases big coordination numbers (13-20), The gallium atoms have 9 12 nearest neighbours, its coordination polyhedrons are icosahedron, cubooctahedron and their related variants.

