08.3-15 THE NEW TERNARY INTERMETALLIDE WITH GIGANT UNIT CELL TD₁₁₇Fe₅₂Ge₁₁₂. By <u>O.I.Bodak</u>, E.I.Gladyshevsky, V.K.Pecharsky and P.K.Starodoob, Faculty of Chemistry, Lvov State University, Lvov, USSR.

Grystal structure of the new ternary compound Tb₁₁₇Fe₅₂Ge₁₁₂ solved by combined direct and Patterson methodes (SHELX-76, XTISM). All calculations were performed on SM-4 mini-computen Adaptation of programs was done by V.K.Pecharsky, P.Yu.Zavalij, L.G.Akselrud, Yu.N.Gryn' and E.I.Gladyshevsky.

Unit cell is cubic: sp.gr. Fm3m, a=28.580(6)Å. Intensities (475 non-equivalent, observed reflections) were measured on P3 NICOLET diffractometer. Final R-factors are 0.054 (isotropic) and 0.047 (anisotropic approximation). List of atomic parameters is given below.

Atom	Position	x	У	z
тъ1	96k	0.1793	0,1793	0,4084
ТЪ2	96k	0.1995	0.1995	0.0663
тъз	96k	0.0681	0.0681	0.1557
ΤЪ4	96j	0.2550	0 .10 36	0
тъ5	48i	0.1158	0.1158	0.5
ТЪ 6	24e	0.3384	0	0
ТЪ7	8c	0.25	0.25	0.25
ТЪЗ	4 a	0	0	0
Fe1	96k	0.1676	0.1676	0.2302
Fe2	32 f	0,3983	0.3983	0.3983
Fe3	48h	0.0723	0.0723	0
Fe4	32f	0•4503	0.4503	0.4503
Ge1	48h	0.1447	0.1447	0
Ge2	48i	0.2906	0.2906	0.5
Ge3	24e	0.2150	0	0
Ge4	32f	0.1464	0.1464	0.1464
Ge5	32£	0,3088	0.3088	0.3088
Ge6	96k	0.1071	0.1071	0.2423
Ge7	24e	0.1152	0	0
Ge8	48g	0.25	0.25	0.1395
Ge9	96k	0.0738	0.0738	0,3228

Co-ordination polyhedra of small atoms (Fe and Ge) are distorted trigonal prisms, tetragonal antyprisms, cubooctahedra and icosahedra. The structure one can build from the polyhedra, mentioned above.

Authors thanks to Dr. Belsky V.K. for help in the experimental part of the present investigation. 08.3-16 THE CRYSTAL STRUCTURES OF THE RARE

EARTH BINARY GALLIDES. By E.I.Hladyshevsky, Ya.P.Yarmolyuk, <u>Yu.N.Hryn</u>', Chair of Inorganic Chemistry, Lvov State University, Lvov, USSR.

During the investigation of the phase equilibria in the ternary systems RE - Ga - 3d-tran sition metal we found 21 new binary gallides of rare earths. Their crystal structures have been studied by X-ray single crystal and powder methods. They belong to 5 structure types:

Compound	Structure type	Space group	a,A	ъ,Я	c,Å
Tm _z Ga _z	Tm _z Ga _z	Pnma	6.001	9.651	11.293
Sm _Q Ga ₄	Sm _o Ga ₄	I4/m	11.940		5.081
GdzGa	GdzGa	I4/mcm	11.666		15.061
HogGaz	Cr ₅ B ₃	I4/mcm	7.590		14.001
YGá ₆	PuGa6	P4/nbm	5•947		7•549

The isotypic to Tm_3Ga_5 compounds were obtained in the systems with Y, Tb, Dy, Ho, Er, Lu. The Im₃Ga₅ structure is closely related to Bi₃Y₅, β -Sb₃Ib₅, UPb₂Se₅ (these four structures relate to one another due to small deformation) and together with Pu₃Pd₅ formes the new series of homogeneous linear structures. The struc-tures of this series have the symmetry of 6 tures of this series have the symmetry of o orthorhombic and monoclinic space groups: Cmcm, Pnma, Pma2, Pmn2, P2,/m, Pm. The SmgGa₄ structure is the substructure to Nb₅Cu₄Si₄. The unit cell of SmgGa4 contains the big details of closest packed structure of AuCu, type. The isotypic phases occur with Pr and Nd. The full structure determination of Gd₃Ga₂ establishes that its real unit cell has four times greater cell volume, as has been repor-ted in former publications. The Gd₃Ga₂ structure is built from some fragments as Pu31Sn20, I₃Rh₂, W₅Si₃, Sm₂₆(Ga,Co)₁₇. The isotypic phases have been found in the systems with Nd, Sm, Tb, Dy, Ho, Er, Tm, Y. The formerly un-known phases with Cr₅B₃ structure type are the high-temperature modifications of Ho5Gaz and Er₅Ga₃ compounds existing at 600°C. The YGa₆ compound finishes the series of rare earth hexagallides with PuGa6 structure type. The PuGa6 structure is related to a well known structure AlB₂ by means of double substitution of the part of R atoms by the pairs of X atoms (R and X are atoms with different radii: $r_{\rm R} - r_{\rm X}$). The rare earth atoms in the described structures have in most cases big coordination numbers (13 - 20), The gallium atoms have 9 -12 nearest neighbours, its coordination polyhedrons are icosahedron, cubooctahedron and their related variants.