08.5-5 FRUSTRATED MAGNETIC STRUCTURE OF THE HEXAGO-NAL BRONZOID FeF₂. By M. Leblanc, <u>G. Ferey</u>, J. Pannetier^{*} and R. De Pape, ERA 609, Faculté des Sciences, 72017 Le Mans Cédex, France and *Institut Laue Langevin 38042 Grenoble Cédex, France.

A new variety of hydrated iron trifluoride $(H_2O)_{0.33}FeF_3$ with HTB structure was recently grown by the hydrothermal method (Leblanc, Ferey, Chevallier, Calage, De Pape, J. Solid State Chem. (1983) <u>47</u>, 53). It dehydrates at 122°C and leads to the HTB new form of FeF₃. However, the small quantity of crystals obtained by this way lead us to imagine another synthesis yielding larger amounts of material for neutron powder diffraction experiments : the flash evaporation of a concentrated solution of FeF₃ in 49 % HF was followed by heating at 150°C under vacuum of the resulting powder. Then, chemical analysis, within the accuracy of the methods, are consistent with the FeF₃ formulation. Neutron diffraction patterns reveal the presence of α -FeF₃ R3C (20 % molar) together with HTB-FeF₃. So, their analysis was performed using a multipattern profile refinement program (Thomas, Bendal1, Acta Cryst. (1978) A34, S351). At room-temperature the structure of HTB-FeF₃ (a = 7.413(2) Å, c = 3.795(1) Å) is related to that of ideal tungsten bronze with empty tunnels. At 4.2K, the magnetic order and the tilting of the octahedra imply the doubling of the c parameter (a = 7.402(2) Å, c = 7.569(1) Å).

The refined magnetic structure can be described with three antiferromagnetic sublattices. The spins of Fe³⁺ (μ =: 4.07(8) $\mu_{\rm B}$) lie in the (a, b) plane at 120° from each other (figure). The magnetic interactions are antiferromagnetic between successive planes along c. This disposition of the spins is due to the 2D-frustration which occurs in the triangles of metallic ions.

08.5-6 MAGNETIC AND CRYSTAL STRUCTURES OF ND₄MnFeF₆. By <u>M. Leblanc</u>, G. Ferey, J. Pannetier* and R. De Pape, ERA 609, Faculté des Sciences, 72017 Le Mans Cédex, France and *Institut Laue Langevin 38042 Grenoble Cédex, France.

Using hydrothermal conditions (380°C, 200 MPa), a new form of ND4MnFeF₆ is obtained (Leblanc, Ferey, Calage, De Pape, J. Solid State Chem. (1983) <u>47</u>, 24). The 3D structure, built from MnFeF₁₀ bioctahedra (Figure) is related to that of BaNb₂O₆ (Galasso, Layden, Ganung, Mater. Res. Bull. (1968) <u>3</u>, 397). The compound is antiferromagnetic ($T_N = 117.7 \pm 0.5$ K) with a parasitic superimposed ferromagnetism ($\sigma_r = 0.005 \ \mu_B.mole^{-1}$ at 4.2K).

Neutron powder diffraction patterns were recorded at 130K and 4.2K (Pnc2 , Z = 4, a = 10.5280(4) Å, b = 7.7973(3) Å, c = 12.8158(5) Å, λ = 1.909 Å). The magnetic and nuclear cells are identical, so the Bertaut's

theory was applied (Bertaut, Magnetism III, Rado and Shull Ed. (1963) 149). The metallic atoms form 4 magnetic independant sublattices.

The Rietveld-Hewatt profile refinement method (Rietveld, J. Appl. Cryst. (1969) 2, 65; Hewatt, Harwell Report AERE-R7350 (1973)) was used (12°<20<115.5°, 452 hkl triplets) and deuterium atoms were localized from Fourier maps. As a consequence of the complexity of the structure (29 independants positions) simplifying hypothesis were applied : isotropic thermal motion identical for each type of atoms, pure antiferromagnetism with $\mu_{\rm Mn}^{2+} = \mu_{\rm Fe}^{-3+}$. The best fit (R_{Nucl} = 0.050, R_{Mag} = 0.040, R_{Prof} = 0.073) between observed and calculated intensi-

ties was obtained when the magnetic moments ($\mu = 4.51(5)\mu B$) lie along b with spins alternatively up and down (Figure). A slight canting appart this direction may occur but could not be refined ($C_x F_y G_z$ mode).

According to these results, all the magnetic interactions are antiferromagnetic, particularly inside the $\rm MnFeF_{10}$ unit where 90° superexchange occurs ; the double correlation superexchange mechanism is excluded. The previously described cationic order between $\rm Mn^{2+}$ and $\rm Fe^{3+}$ inside the MnFeF_{10} bioctahedra is clearly confirmed.

