C – 262 08. INORGANIC AND MINERALOGICAL CRYSTALLOGRAPHY

08.5-7 MAGNETIC ORDERING IN THE NATURAL ORTHOPYROXENE Fe_{0.87}Mg_{0.13}SiO₃. By A. Wiedenmann^{a)}, J.R. Regnard^{a)} and S.S. Hafner^{b)}. ^{a)}DRF. CENG 85X F-38041Grenoble, ^{b)}University Marburg, Marburg, F.R.G.

In the crystal structure of orthopyroxene $Fe_xMg_{1-x}SiO_3$ two nonequivalent positions M_1 and M_2 of oxygen octahedra are occupied by Fe^{2+} and Mg^{2+} with a preference of Fe^{2+} for the more distorted ${\rm M}_2$ site. In the unit cell edge sharing octahedra build up four ribbons of infinite length along the c axis well separated from each other (d = 4.9 A). Each ribbon consists of two linear chains of ${\rm M}_2$ which enclose a zigzag chain of M₁ (Virgo and Hafner, Amer. Mineral. (1970) 55, 201). Investigations of the magnetic properties of the natural pyroxene $Fe_{0.87}Mg_{0.13}SiO_3$ were performed on a polycrystalline sample of 100 mg. The powder susceptibility follows a Curie-Weiss law with $\theta_{p} = 34$ K and $\mu_{eff} = 5.24 \mu_{B}$, indicating large orbital contributions. $\boldsymbol{\chi}$ exhibits an inflection point at $T_{N} = 26$ K reflecting an antiferromagnetic ordering. The onset of long range magnetic order at ${\rm T}_{\rm N}$ was confirmed by neutron diffraction. The propagation vector is $\vec{k} = [000]$ indicative for a collinear magnetic structure. From an intensity refinement the coupling between the 16 sublattices was obtained: all the moments within a ribbon are aligned ferromagnetically along the b axis with an antiferromagnetic coupling between neighbouring ribbons. The ferromagnetic exchange interaction between the nearest neighbours within the ribbons (d = 3.1 Å) is certainly much stronger than the antiferromagnetic coupling of the moments between neighbouring ribbons, giving rise to a special type of 1D magnetic behaviour. Mössbauer experiments in the paramagnetic region revealed two distinct quadrupole interactions of Fe^{2+} of 3.0 and 1.99 mm/s for the sites M₁ and M₂, respectively. Below the transition temperature the hyperfine spectra (with large linewidth of about 0.8 mm/s) are well described by a distribution of distinct electric field gradients and magnetic hyperfine fields due to the different Mg^{2+} , Fe^{2+} configurations surrounding M_1 and M_2 as nearest neighbours.

08.6-1 ESR AND MÖSSBAUER STUDIES OF Cu- AND Fe-CONTAINING SULFOSALTS. By K.Bente, V.Kupcik, Min.-Krist.Institut Univ. Göttingen, G.Amthauer, Institut f.Miner. und Krist. Univ. Marburg, D.Siebert, Phys.Chem. Institut Univ. Freiburg

ESR and Mössbauer studies were carried out on the Cu- and Fe-containing sulfosalts kobellite ((Cu,Fe)Pb6Sb2Bi4S16), Cu8.4 Fe1.2Bi10.8S22, covellite (CuS), idaite (Cu5FeS6), and Cu4Bi4S9, which contain lacks of positive charge basing on Cu⁺, Pb⁺⁺, Sb⁺⁺⁺, Bi⁺⁺⁺, Fe⁺⁺, S²⁻ and S $_2^2$ ⁻(if covellite fragments are present). The phases were synthesized under condensed conditions using the elements (99.999%) as starting materials. For the synthesis of the phases containing Fe in minor amounts, Fe enriched in ⁵⁷Fe was used. The ESR and Mössbauer studies were performed from room temperature to the temperature of liquid nitrogen (LN₂).

The ESR studies gave no Cu⁺⁺ signals for covellite over the whole temperature range and Cu⁺⁺ signals for Cu₄Bi₄S₉ at T \leq 173K (g=1.91) and for idaite at T \leq 96K (g=1.87). Because of the charge balance of these phases, mixed valence state of Cu (~1.5+) has to be suggested at temperatures without an ESR signal. This suggestion is verified in the case of idaite showing mixed valence state for Fe (~2.5+) by Mössbauer studies with an isomer shift of δ =0.35 for tetrahedrally coordinated Fe. ESR studies on the phases kobellite and Cu_{8.4}Fe_{1.2} Bi_{10.8}S₂₂ show paramagnetic signals for Cu⁺⁺ over the whole temperature range with g=2.01 and 2.019 respectively.

Mössbauer studies lead to Fe⁺⁺ in both cases. An empirical term for the mixed valence state and/or the valence of 2+ for Cu in positive charge deficient sulfosalts is proposed.