9. STRUCTURES OF ORGANIC, ORGANOMETALLIC AND COORDINATION COMPOUNDS
10. 1-7 BENZENE-O-DISUIFINIC ANHYDRIDE. -ONE COMPOUND -TWO CRystal structures. By Rita g. Hazell, Chemistry department, Aarhus University, DK8000 Arhus C, Denmark.
Recrystallization of benzene-o-disulfinic anhydride from boiling acetonitrile gave colourless plates from the hot solution. When the mother liquor was left at $-25^{\circ} \mathrm{C}$ colourless needles formed, giving a suspicion of cistrans isomerism.
Crystal data: Plates:a=7.377(2), $b=7.783(1), c=12.313(2)$, $\beta=99.78(1), P 2_{1} / n, Z=4, R=0.033$. Needles: $a=7.521$ (2), $b=11.860(5), c=8.132(3), B=100.46(2), P 21 / c, Z=4, R=0.035$. Both structures solved by muitan.

The cis-conformation was found in both structures, the main difference being that the two $S-0$ bonds in the $5-$ ring were significantly different, 1.686 and 1.662 A , in the low temperature form, not in the other. This is explained by a fairly short contact to an oxygen atom of another molecule from the sulfur with the long S-O bond.

Plates:

Needles:

09. 2-1 THE CRYSTAL AND MOLECULAR STRUCTURES OF DIBENZIMIDE AND ITS N-METHYLATED ANALOGUE: STERIC AND HYDROGEN-BONDING EFFECIS. By ∇. Mizrahi and M. Niven, School of Chemical Sciences, University of Cape Town, Rondebosch, South Africa.

Dibenzimide, $\mathrm{C}_{1} \mathrm{H}_{12} \mathrm{NO}_{2}, \mathrm{Mr}=225.3$, orthorhombic, Iba $a_{2}, a=15.775(8), b=8.471(4), c=9.003(4) \AA$, $\mathrm{D}_{\mathrm{r}}=1.24 \mathrm{Mgm}^{-3}, 2=4, \mu(\mathrm{MoKa})=0.05 \mathrm{~mm}^{-1}, F(000)=472$, $R=0.09, R w=0.07\left(w=\left(\sigma^{2} F\right)-1\right)$ for 196 re£1ections; N-Methyldibenzimide, $\mathrm{C}_{1} 5 \mathrm{H}_{1} 9 \mathrm{NO}_{2}, \mathrm{Mr}_{2}=239.3$, monoclinic, P21/c, $a=10$:107(5), $b=15.625(8)$, $c=7.912(4) \AA,=96.87(2)^{\circ}, \quad D_{x}=1.28 \mathrm{Mgm}^{3}, Z=4$, $\mu(M \circ K \alpha)=0.05 \mathrm{~mm}^{-1}, F(000)=504, R=0.05, R w=0.04$ $\left.\left(w=\left(\sigma^{2} F\right)\right)^{1}\right)$ for 1083 reflections; graphitemonochromated MoKa radiation ($\lambda=0.7107 \AA$) used in both determinations.

Both compounds exhibit significant deviation from OCNCO planarity, in addition to substantial aromatic ring twist. The conformation of the secondary imide is $\simeq(Z, Z)$ with the $\mathrm{N}-\mathrm{H}$ group located on a two-fold axis. The imide hydrogen is shared in intermolecular hydrozen bonding by the two carbonyl oxygen atoms of an adjacent molecule. In contrast, the tertiary imide adopts an (E, Z) conformation.

An important consequence of N-methylation of dibenzimide is that the nitrogen atom pyramidality is distorted, which reduces the conjugation within the ocNCO moiety. This effect manifests itself in weakening the $\mathbb{N}-C$ bond with concomitant enhancement of carbonylcarbon electrophilicity (as indicated by comparative ${ }^{13} \mathrm{C}$ n.m.r. chemical shifts) in the
tertiary derivative. These observations are consistent with the greater susceptibility of tertiary imides to nucleophilic attack than their secondary analogues.
09.2-2 CRYSTAL STRUCTURE OF 1,1-BIS(5-CARBOMETHOXY-2-FURYL)-2,2,2-TRICHLOROETHANE. BY R. Pomes and F. Fajardo, Academy of Sciences of Cuba and University of oriente, Santiago de Cuba, CUBA.

The crystals of $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{6} \mathrm{Cl}_{3}$ are monoclinic, space group
$P 2_{1} / \mathrm{m}$ with $a=6.38(1), b=21.19(1), c=6.21(1) \AA$, $B=102.15(1)^{\circ}, z=2$.
Data were collected with a perpendicular beams diffractometer using MoKa radiation. Direct methods were used for the determination of the structure. Refinement was made by the full-matrix least-squares method to a final R value of 0.03 for $981 \mathrm{~F}(\mathrm{hkl})$.
The structure is stabilized by Van der Waals contacts.

Molecular structure of $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{6} \mathrm{Cl}_{3}$

