09.2-36 STRUCTURE AND FIEXIBIIITY OF MODEL SYSTEMS FOR THE PLANT PIGMENT PHYTOCHROME. By Christoph Kratky, Institut fue physikalische Chemie, Universität Graz, A-8010 Graz, Austria.

Phytiochrome 1 is the photoreceptor in higher plants responsible for photomorphogenesis. There exists considerable evidence that Z / E isomerism about one of the exocyclic double bonds plays an important role in its function.

Crystal structures of several model systems for phytochrome were determined, including systems with the complete phytochrome chromophore and pairs of Z / E isomers (about the 4-5 bond) for an N methylated dihydropyromethenone and for a phytochrome analog with a carbonyl group in position 3 . All structures were determined at low temperature and they yield an accurate structural characterization of this biologically important system.

The flexibility of the above molecules in the crystal is analyzed with a simple test based on Hirshfeld's "rigid bond" postulate (Hirshfeld, F.L. (1976). Acta Cryst. A32, 239244) and its generalization to "rigid groups" (Rosenfield, R.E., Trueblood, K.N. \& Dunitz, J.D. (1978). Acta Cryst. A34, 828-829), combined with a half-normal probability plot to assessthe significance of non-zero Deltavalues.
09.2-37 COUPLJNG PRODUCTS OF DIAZONIUM SALTS WITH 3- AND 2 -ALKOXY-1,6-METHANO[10]ANNULENES AND THE STRUCTURE OF AN ANALOGOUS $4,40,8,80-$ TETRAHYDRO-4a, 8a-METHANO-1,5-MAPHTHOQUINONE. By C.-P.Kaerlejn. A.Gjeren and H. Betz. Max-Planck-Institut f. Bjochemie. Abt. Strukturforschung I, 8033 Martinsejed, FRG.
With respect to the 1.6 -methano[10]annulene derivatives $\underline{\underline{1}}$ and $?$ the cycloheptatriene forms 1 로. 1 b and the norcaradiene forms 1 复. $\frac{1 d}{0}$. as wej] as the
 comparison to the azo forms (1b. Ad have to be discussed. Compound $\underline{?}$ with respect to the molecular skeleton is a positional isomer of $\underline{1}$ with a para-arrangement of the semjeyclic double bonds in contrast to an ortho one in $\frac{1}{2}$. $1_{\text {H-NMR }}$ spectra indicated a norcaradiene form for $\frac{1}{3}$ and a cycloheptatriene form for 2 . Also for $\overline{3}$ a norcaradiene (3 b) and a cycjoheptatriene form (3 ge) have fo be consjdered. An X -ray structure analysis (R. Neidlein. C. H .

Radke, E. Hadicke. and A. Gieren. Chem. Ber. (1983) 116, 2881) revealed ? to exist in a cycloheptatriene form and as the hydrazone tautomer. Both the molecular geometry and, particularly, the $1,6-C-C$ distance of $2.28 \AA$ indicate a very small contribution of a norcaradiene canonic structure of type 1 c . Recently the cycloheptatriene form and Ehe hydrazone tautomer (1a) were found in the case of 1 . too. In this cäse, however, the $1,6-\mathrm{C}-\mathrm{C}$ distance of 2.23% is significantly shorter indicating a stronger contribution of the norcaradiene canonic structure $1 \underline{\underline{c}}$ compared with the analogous form in the case of 2 . Furthermore, the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle of the CH_{2} bridge is ca. 3° smaller. The configurations of 1 and 2. are stabilized by hydrogen bonds. ${ }^{2}$. The formation of different hydrogen bonds in 1 and $\underline{2}$ gives rise to configurational differences between 1 and $\underline{2}$ with respect to the $\mathrm{C}=\mathrm{N}$ bond. The differences between the positional isomers of the $1,6-m e t h a n o[10] a n n u] e n e s$ (with 1 bejng orthoquinoja and 2 paraquinoid) are associated with specifjc alternations of the bond lengths. Compared with $\frac{1}{2}$ and $\underline{\underline{2}}$, compound 3 has a naphthodiquinone $=1 j k e$ structure and thus exhibits an $1,6-C-C$ bond giving rise to the formation of a cyclopropane ring. The bonding features are best described by the canonic formula \mathfrak{l} a with considerable contribution of 3b. The \bar{j} engthenjng of the transannular $C-C$ bond (1.557) in connection with the overall bond geometry of the cyclopropane ring indicates a tendency towards an open form comparab]e to 1.6-methano[10]annulene 3e. In contrast to this finding in 3 , the compounds 1 and \underline{z} are methano[10]annulene systems with $\frac{\bar{y}}{}$ tendency towards the formation of the cyclopropane ring.
09. 2-38

CRYSTAL STRUCTURE OF METHYL N(2,2 -DICYANO-I-PHENYIEIHENYL) THIOBENZIMIDATE
J.L. BAICAZAR Dpto.Geology.Univ.Atalá de Fenares.madrid. F.FIORENCIO and S.GARCIA-BLANCO. Dpto. Rayos X. Institute Focasolano. Serrano 119. Madrid-6. Spain.

Single crystal of the title compound were provided by Dr. Lorente of the ppto. Of Ch. Organique of the Univ. of Alcalá de Henares, Madrid.

The crystal structure has been solved by MIITAN Màin, Full, Lessinger, Germain, Declerq and Woolfson, 1978), and refined by weighted least--squares analysis up to the discrepance indices of R and $R w=0.057$, for 5449 observed reflexions independent of wich 4093 were considered observed with I<2 \quad (I).
Crystal data are:
Formula, $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$ Triclinic P $\overline{1}$
$\mathrm{Mc}=296.41 \quad \mathrm{D}_{\mathrm{X}}=1.2306 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
$a=18.853$ (2) \AA
$b=8.843(2)^{\prime \prime}$
$\mathrm{c}=10.545$ (2) "
$\alpha=111.39(1)^{\circ}$
$\beta=83.77(1)^{\circ}$
$\gamma=102.05(1)^{\circ}$
$\mathrm{V}=1599.9$ (6) \AA^{3}
$z=4$
$\mu=17.17 \mathrm{~cm}^{-1}$
$F(000)=696$
$\lambda=1.5418$

