09. STRUCTURES OF ORGANIC, ORGANOMETALLIC AND COORDINATION COMPOUNDS

09.2-50 THE STRUCTURES OF SOME 1,4-BENZODIAZEPINES, 1,5-BENZODIAZOCINES AND ITS DERTVATIVES. By A.A.DVorkin, Yu.A.Simonov and T.I. Melinowsky, Institute of Applied Physics of Academy of Sciences of Mold.SSR, Kishinev and S.A.Andronati and A.S.Yavorsky, Physics-Chemical Institute of Academy of Sciences of Ukr.SSR, Odessa, USSR.

The structures of 1,4-benzodiazepines were

determined by the X-ray method. In all three cases the structures are molecular ones. The structure (I) is built up of molecular dimers by two H-bonds. The 7 -membered ring has a "boat" conformation. The bond lengths and angles are in agreement with those found in diazepam, oxazepam (Camerman \& Camerman, J. Amer. Chem. Soc. (1972) 94, 268 and G.Gilli, VoBertolasi, H. Sacerdoti \& P.A.Bores, Acta Cryst. (1977) B33, 2664) and others. The molecular structure with "bath" conformation is realized in 1,5-benzodiazocines, which are

analogous of 1,4 -benzodiazepines. We have found in (IV) an unusual $C-N=1.450 \AA$ bond, which is shorter than in other similar compounds. It can be explained by the influence of the electron-donor substituent in 8 -position. The structure of the compound (VII) has been determined as well. The 16 -membered hetero-

cycle contains a C_{2}-axis and is stabilized by two intramolecular H-bonds. The molecule consists of nearly flat iragments with "bath" conformation.
09.2-51 CRYSTAE STRUCTURE OF A PIPERIDINE NITROXYL AND ITS FREE AMINE. By M. Cygler, Dept. of Crystallography, Inst, of Chemistry, University of モódź, 91-4 16 玉ódź, Nowotki 18, Poland.

Crystal structures of 4-phenoxymethyl-4-hydro-xy-2,2,6,6-tetramethylpiperidine (I) and its N-oxyl derivative (II) have been determined. Compound I crystallizes in space group P2 $1 / 8$ with $a=13.666, b=10.449, c=11.491, \beta=111.98^{\circ}$, $Z=4$, and compound II crystallizes in space group p^{1} with $a=12.034, b=11.648, c=13.080$, A, $\alpha=90.25, \beta=116.33, r=96.44^{\circ}, Z=4$ with two moIecules in the asymmetric unit. Both structures have been solved by direct methods and refined to $R=0.052$ and 0.056 for I and II respectively. Molecules of I and II adopt very similar conformations in the solid state with a chair form of the piperidine ring, axial orientation of the hydroxyl group and with the equatorial substituent at $C(4)$ in an extended conformation. The phenyl ring is nearly perpendicular to the mean plane of the piperidine ring. The arrangements of molecules in the crystals of I and II are very similar but the lack of exact equivalence of the two independent molecules in II lowers the symmetry from monoclinic to triclinic. The networks of $\mathrm{H}-$ bonis are topologically equivalent in both crystals. Molecules are joined in chains along the c-axis. The N-O group in II makes an angle of 18° with the CNC plane, well within the range observed in other nitroxypiperidine derivatives.
09.2-52 STRUCTURAL STJDIES OF PHENYL-

SULPHIDE DERIVATIVES. By Józef Garbarczyk,
Department of Chemiatry, Technical University, Poznan, Poland.
The crystal structures of the following compounds have been determined:
1.4,4'-dimercaptodiphenylenesulphide: monoclinic $P 2 / n, \quad a=5.752, b=25.767, c=7.954 A$, $\beta=95.24^{\circ}, Z^{2} 4, R=0.080^{\prime}$ for 1237 reflexions.
*/2.4, 4;-bis/phenylthio/-benzene: monoclinic $P 2 / a, a=5.794, b=18.185, c=7.590 \mathrm{~A}$, $\beta=109.78^{\circ}, \mathrm{Z}=2, \mathrm{R}=0.954$ for 1387 reflexions molecular symmetry C_{i}.
**.4, 4'-sulphonyl-bis/phenylene-S-thiobenzoate/: monoclinic P2 $/ a, a=14.050, b=10.404$ $c=16.734 \mathrm{~A}, ~ \beta=110.57^{\circ}, \mathrm{Z}=4$, $\mathrm{R}=0.049$ for reflexions.
4. Triphenodithiazine: monoclinic P2/a, $a=10.472, b=5.430, c=12.356 \mathrm{~A}, \beta=107.61^{\circ}$, $\mathrm{Z}=2, \mathrm{R}=0.0711$ for 699 reflexions, moleculer symmetry C.
*/In collabolation with Prof. G.D.Andretti,
University of Parma, Italy, Gryst. Struct.
Com, 1981/**/Details of the analyses of com-
pound 3, have been submitted to Die Makrom. Chem. for publication/.
The present work is a part of our study on
the relationship between structure and ther-
mal properties of sulphur containing polymers.
The investigated compounds are model molecules for related polymers.
It was found that the bond lenghts $S \rightarrow C$ are
within a range 1.744 to 1.785 A and $\mathrm{C}-\mathrm{S}-\mathrm{C}$
angles within a range 99 to 106°. It is interesting that in triphenodithiazine these values are maintained in spite of the fact a sulphur atom is a part of six-membered ring.

The results obteined ghow a deformation of phenyl rings：the angles at C atoms bonded with a sulphur atom are smeller than those at neishbouring carbon atoms．Comparison of the molecular structures of 1,2 and 3 indicates that the investigated compounds have various angles between phengl planes．Difiexence in conformation of 1 and 2 and in particularly asymmetric atructure of 3 was expleined an the basis of energetic calculations．It was determined that in 3 ，for example，the enexge－ tic berrier during rotetion around $C=S$ bond íw relatively low／approx．2－3 kcal／mol／． It indicates a possibility of a conforma tonal change in the compounds in diluted solution and at rising temperature，雷he detex－ mines valence angles，bond lengths as well as angles determining molecular atructures are dipferent from those found for poly－p－pheny－ lenesulphide．
The arrangement of molecules in unit cells confirms that only these model compounds which，similarly to related mecromolecules， have not molecular aymmetry C pan be used for the stady of intermolecular interactions in polymers．

09．2－53
Exystal structure of 4，5－3inydro－ 6－（2－thienyl）$-3(2 H)$ pyridazinone （2ine $\mathrm{O}_{16} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{~S}_{2}$ 。

By

G．Fin Ins S．Ahmed Parag and M．El－Kordy．
（National Reasarch Centre，Dokki，Cairo．）

The compound was prepared from a air－ ect unusual reaction of $6-(2-$ thienyl）$-2,3$ ， 4，5－tatrahyaropyridazin－3－one with hysazane hydrate．Fine crystals of this compound are monoclinic with uit cell constants： $a=5.567(1)_{0} ; b=7.857(2) ; c=19.194(10)$ i ； 2 $99.97(3)$ 保 $z=2$ ．The systematic abse－ nces and the statistical alstribution of the normalizee structure smplitudes showe that the unit cell should acquire a centro of dymmetry and hence the space group was consi备ered to be $P 2_{f} / \mathrm{c}$ ．The molecule be－ hafes in the structure as a dimer mith
half forming the asymmetric unit．
The structure was solved using the direct method and then refined by least squares method using full matrix approximation with anisotropic thermal parameters for individual atoms to $R_{w}=0.05$.

The dimer was found to have a centre of symmetry at the middle point of the bond con－ necting the two dimer halves．In each dimer half the thienyl ring was found to be coplanar with the pyridazinone ring．The deviations from this planarity were calculated for each atom．

09．2－54 COMPARATIVE STUDY OF THE HTGH PRESSURE AND LOW TEMPERATURE（TMTSF）${ }_{2} \mathrm{PF}_{6}$ STRUCTURES．
Jo Gaultier，C．Haw，B，GaIlois
Laboratoire de Cristallographie et de Physique Cristalline LA 144 CNRS，351，Cours de la Libération－ 33405 TALENCE CEDEX（France）
The crystal structure of $2 \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Se}_{4}^{1 / 2^{+}} \cdot \mathrm{PF}_{6}^{-}$，a unidi－ mensional organic conductor which exhibits superconducti－ vity at 12 Kbars below 0.9 K ，has been determined respec－ tively at 4 K and under an 7 Kbars hydrostatic pressure．

The space group and the crystal packing are the same than at ambient pressure and room temperature（Thorup et al 1981，Acta Cryst，B37）．However the intra and interstack distances are perturbed．In particular，Se－Se distances of great interest for the understanding of conducting properties，decrease strongly．Thus，the dimensional cha－ racter is increased．

1 Kbar 300 K	$\begin{gathered} 7 \text { Kbars } \\ 300 \mathrm{~K} \end{gathered}$	$\begin{gathered} 1 \mathrm{bar} \\ 4 \mathrm{~K} \end{gathered}$
Intrastack $\begin{array}{l\|c} \text { Se-Se distances } \\ \mathrm{d}_{1} & 3,66 \AA \\ \mathrm{~d}_{2} & 3,63 \AA \mathrm{~A} \end{array}$	$3.56 \AA$ 8.5 8	$\begin{aligned} & 3.55 \AA \\ & 3,53 \AA \end{aligned}$
	$3,74 \AA$ 8 3,78	$\begin{aligned} & 3,71 \AA \\ & 3,74 \AA \\ & 3,86 \AA \end{aligned}$
Shortest Se－Fdistance d_{4} $3,23 \mathrm{~A}$	3，09 ${ }_{\text {A }}$	3，06 \AA

At room temperature，the PF_{6}^{-}anion is disordered．Under pressure，this disorder strongly weakens and at 4 K ，the anion is perfectly ordered．

