09.3-8 CRYSTAL STRUCTURES OF (1) BIS $\left(\eta^{5}\right.$ -CYCLOPENTADIENYL- η^{6}-TETRAHYDRONAPTHALENE-IRON) DODECAHYDRO-DODECABORATE AND (2) BIS(η^{5}-CYCLO-PENTADIENYL- η^{6}-ISOPROPYLBENZENE-IRON)DODECAHY-DRO-DODECABORATE. By Chen Liqing \& Pan Kezhen, Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou, China and Zhang Lum \& Hu Peizhi, Department of Chemistry, Wuhan University, Wuhan, China.
Compound 1 (see Title and Figure) Crystal data are : Orthorhombic s.g. Pbca, $a=20.854(5), b=$ $14.629(4), c=21.051$ (5) R., $Z=8 . R=0.080$ for 1899 reflections with $\mathrm{I} \geqslant 30$. The cation $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}-\right.$ $\left.\mathrm{C}_{10} \mathrm{H}_{12}\right)^{+}$has a samdwich comformation. The dihedral angle between the Cp ring and the conjugate six-member ring (Ph) in tetrahydronapthalene is 2.6°. The anion $\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$ is a slightly distorted icosahedrom. The more important distance and angle averages are $\mathrm{Fe}-\mathrm{C}(\mathrm{Cp})=2.031$, $\mathrm{Fe}-\mathrm{C}(\mathrm{Ph})=2.085, \mathrm{C}-\mathrm{C}(\mathrm{Cp})=1.382, \mathrm{C}-\mathrm{C}(\mathrm{Ph})=1.416$, $C-C($ single bomid $)=1.540, B-B=1.776$ R, $B-B-B=60.0$ (trigon) \& 108.0° (pentagon). The distance between Fe and Cp ring is 1.658 \%, and that between Fe and Ph ring is 1.530 \%.

Compoumd 2 Crystal data are : Monoclinic s.g. $\mathrm{c} 2 / \mathrm{c}, \mathrm{a}=18.703(9), b=25.120(7), c=15.190(7) \mathrm{A}$, $\beta=94.70(4)^{\circ}, z=8 . \quad \mathrm{R}=0.070$ for 2931 reflections with $I \geqslant 3 \sigma$. It has a structure similar to that of Compoumd 1. The average bomd lengths : Fe-C (Cp) $=2.035, \mathrm{Fe}-\mathrm{C}(\mathrm{Ph})=2.075, \mathrm{C}-\mathrm{C}(\mathrm{Cp})=1.377, \mathrm{C}-\mathrm{C}$ $(\mathrm{Ph})=1.394, \mathrm{~B}-\mathrm{B}=1.777$ \&. The distance from Fe to the Cp ring is $1.664 \AA$, and that to the Ph ring is 1.537 . The dihedral angle between $C p$ and Ph rings is 0.8°.

In both compounds, the cation and amion are of the distorted square and hexahedron coordinations, respectively.

(1)

$$
\left(\mathrm{C}_{15}{ }^{\mathrm{H}} 17^{\mathrm{Fe}^{+}}\right)_{2} \cdot \mathrm{~B}_{12} \mathrm{H}_{12}^{2-}
$$

9. 3-9

CRyStal and molecular structures of
$\left.\left(n^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2} \mathrm{Mo}\left(\mathrm{SO}_{4}\right)$ and $\left|\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoI}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right|\left(\mathrm{PF}_{6}\right)$. By M. A.A.F. de C.T. Carrondo, A.M.T.S. Domingos ${ }^{*}$ and M.T.Leal, Centro de Química Estrutural, Complexo I, I.S.T., Lisboa, Portuga1. *Sector de Química, LNETI, Sacavem, Portugal.

Following our structural studies on Mo and Ti bis--cyclopentadienyl complexes (Carrondo and Domingos, J. Organomet. Chem. (1983), 253, 53) we now report the crystal structure determinations of the title compounds.
Crystal data for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{SO}_{4}\right)$ (I) $-\mathrm{Mr}=322,11$, or tho-
rhombic Anana 2, $a=12.979(4), \quad b=8.547(2), \quad c=9.356(5) \AA$,
$\mathrm{V}=1037.9 \AA^{3}, \mathrm{Z}=4$, MoKa radiation, 475 reflections with $\mathrm{F}>3 \sigma(\mathrm{~F})$.
Crystal data for $\left|\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) 2^{\mathrm{MoI}\left(\mathrm{CH}_{3} \mathrm{CN}\right)}\right|\left(\mathrm{PF}_{6}\right)$ (II) -- Mr=538,94, triclinic P1, $\mathfrak{a}=7.7989$ (6), $b=10.3044$ (8), $C^{\prime}=10.5565(5)$ A, $\alpha=96.218(4), \beta=94.466(4), \gamma=102.697(5)^{\circ}$, $\mathrm{V}=818.2 \mathrm{~A}^{3}, \mathrm{z}=2$, MoK α radiation, 4187 reflections with $\mathrm{F}>3 \sigma(\mathrm{~F})$.
The structures were solved by Patterson and difference electron density sqntheses using Shelx and refined for compound (I) by full-matrix least-squares to $\mathrm{R}=0.025$ and for compound (ID) by blocked matrix least-squares ($\mathrm{R}=0.086$, still in progress).
Molecules of (I) have the bent metallocene structure in which the Mo atom is attached to two oxygen atoms of the sulphate ligand and two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ groups in a distorted tetrahedron coordination. The Mo atom is at an average distance of $1.967(7)$ A from the Cp rings and the angle between the ring normals is $134.8(4)^{\circ}$. The Mo-0(1) and Mo-O(2) bond lengths are respectively 2.057 (9) and 2.162(8) and the $0(1)-\mathrm{Mo}-0$ (2) bond angle is $65.9(2)^{\circ}$. For the related compound $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoO}_{2} \mathrm{PO}_{2} \mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) 2\right]\left(\mathrm{PF}_{6}\right)_{2}$ (Prout, Couldwell and Forder, Acta Cryst. (1977), B 33,218) a mean Mo-0 bond length of $2.126(3)$ A and $0-\mathrm{Mo}-\mathrm{O}$ bond angle of $67.8(1)^{\circ}$ have been reported. The structure of compound (II) consists of two discrete organometallic cations and two hexafluorophosphate anions per unit cell. The Mo atom coordinates two n^{5}-C5H5 groups, one iodide and the nitrogen atom of one acetonitrile ligand. In each molecule the coordination geometry about the Mo atom is a distorted tetrahedron. At the present stage of refinement the MO-I and Mo-N bond lengths and the $\mathrm{N}_{-}-\mathrm{Mo}-\mathrm{I}$ bond angle are respectively $2.840(4) \AA, 2.172(23) \AA$ and $80.8(6)^{\circ}$ for one molecule and $2.822(4) \AA, 2.096(21) \AA$ and $81.4(5)^{\circ}$ for the second.
Details of the molecular geometry will be given and comparison to similar compounds presented.

