09.3-15 DISTANCE AND ANGIE VARIATIONS IN CYCLIC SULFUR-NITROGEN MOLECULES INVOLVIMG DELOCAIIZED BONDING. By A. W, Cordes and W. T. Pennington, Chemistry Department, University of Arkansas, Fayetteville, Arkansas 72701 USA and R. T. Oakley, Chemistry Department, Guelph University, Guelph, Ontario NLG 2W1, Canada.

An analysis will be presented of the variations observed for apparently chemically-equivalent bond distances and bond angles in cyclic molecules containing segments of alternating sulfur and nitrogen atoms. The analysis takes into account a series of sulfur-nitrogen compounds recently prepared, including heterocyclic molecules containing titanium, sulfur, and nitrogen in the ring. One of the latter structures; that of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) 2^{\mathrm{TiS}_{3} \mathrm{~N}_{4}}$, contains an eight-membered
-TiNSNSNSN- ring which is nearly planar for the seven atom $\mathrm{S}-\mathrm{N}$ portion of the ring. Because this structure has twelve molecules in a unit cell of symmetry $\mathrm{P}_{1} / \mathrm{C}$,
it provides interesting data on the typical variations observed in these distortable rings. Examples of unexpected distortions in other sulfur-nitrogen rings can be discussed in terms of second order Jahn-Teller effects. The conclusions of this analysis will address the possible pitfalls in making bonding rationales for sulfur-nitrogen ring molecules on the basis of solid-state structures.
09. 3-16 STRUCTURES AND REACTIONS OF COORDINATED HEXAFLUDRO日UT-2-YNE. By A. Jarvie, Lj. ManojlovićMuir, J.C. Miller, and K.W. Muir, Chemistry Department, University of Clasgow, Glasgow Gl2 8Q0, Scotland.

The complexes $\left[\mathrm{CpMX}(\mathrm{hfb})_{2}\right]$, where $M=$ Mo or $W, X=$ anionic ligand, and hfb is the electron-withdrawing alkyne hexafluorobut-2-yne, have proved a fertile source of organometallic species of novel structure. Previous work in this laboratory has shown that nucleophiles such as PEt_{3} and $\mathrm{CNBu}{ }^{\mathrm{t}}$ add to coordinated hfb rather than to the metal, with formation of $n^{2}-v i n y l$ complexes . When $X=5 P_{I}{ }^{i}$ a species isomeric with the starting complex can be isolated containing an $\eta^{3}-P_{r}{ }^{i}{ }^{\text {S-hfb }}$ ligand

We shall report the structures of new complexes of this type including those of (1) the adduct of $\left[\mathrm{WBr}_{2}(\mathrm{CO})(\mathrm{hfb})_{2}\right]$ and $\mathrm{P}(\mathrm{OR})_{3}$ and (2) an isomer of $\left[\mathrm{CPMo}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{hfb})_{2}\right]$ thought to contain a rare example of coordinated tetrakis(trifluoromethyl)cyclobutadiene.

In addition we shall present comparative structural details of the hfb-W interactions in these complexes, showing how they relate ta the electronic configurations of the metal atoms.
09.3-17 A Rh(I) COMPLEX WITH THE TRIPOD-LIKE TRIDENTATE PHOSPHINE $1,1,1-T R I S(D I P H E N Y L P H O S-$ PHINOMETHYL) ETHANE.
F. Bachechi, Istituto di Strutturistica Chimica, "G. Giacomello", C.N.R. Roma (Italy). J. Ott and L.M. Venanzi, Laboratorium fur Anorganische Chemie, E.T.H., Universitatstrasse 6, CH-8006 Zurich, Switzerland.

The Iigand 1,1,1-tris(diphenylphosphinomethyl)ethane, triphos, has been employed in several metal complex systems since it was first reported in 1962 (W. Hewertson and H.R. Watson, J. Chem. Soc. (1962) 1490). Its geometry is such that it"can only occupy three facial sites of a coordination polyhedron. Since it occupies three sites of a coordination sphere, the steric relationships of the remaining ligands are often fixed. As a consequence of its tridentate character and specific geometry, complexes with a degree of substitution and stereochemistry, not otherwise attainable with three unidentate ligands, may be realized.
Several $\mathrm{Rh}(\mathrm{I})$ and $\mathrm{Rh}(I I I)$ complexes of this ligand are in course of study. Some of them are polynuclear with hydrido bridges. Here the structure of [Rh(triphos)(NBD)] $\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]$, where NBD is norbormadiene, is reported and will be discussed with those of related compounds.

$\mathrm{Rh}-\mathrm{P}(1)$	$2.313(2) \AA$	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$	$91.14(7)^{\circ}$
$\mathrm{Rh}-\mathrm{P}(2)$	$2.399(2)$	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(3)$	$87.76(7)$
$\mathrm{Rh}-\mathrm{P}(3)$	$2.321(2)$	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{MP}(1)$	144.5
$\mathrm{Rh}-\mathrm{MP}(1)$	2.069	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{MP}(2)$	94.8
$\mathrm{Rh}-\mathrm{MP}(2)$	2.116	$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{P}(3)$	$87.03(7)$
		$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{MP}(1)$	123.8
		$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{MP}(2)$	115.0
		$\mathrm{P}(3)-\mathrm{Rh}-\mathrm{MP}(1)$	99.0
		$\mathrm{P}(3)-\mathrm{Rh}-\mathrm{MP}(2)$	157.7
		$\mathrm{MP}(1)-\mathrm{Rh}-\mathrm{MP}(2)$	66.6

$M P=m i d p o i n t$ of the coordinated double bond.

