C-296
09. STRUCTURES OF ORGANIC, ORGANOMETALLIC AND COORDINATION COMPOUNDS
 ring and the second diene is nearly parallel with the Cp plane ($2: 35.0^{\circ}, 3: 18.5^{\circ}$) with terminal carbons away from the $C p$ ring. Complex 1 , the starting material for a series of bis (diene) complexes as 2 and 3 , includes the first type of diene. In all the complexes, the terminal $\mathrm{C}-\mathrm{C}$ bonds are longer than the central $C-C$ bonds. The bent angles of the pentacycles of Ta and diene ($1: 94.9^{\circ}, \underline{2}: 102.5,100.4^{\circ}$) are intermediate in value between the corresponding angles in Group IVA- and VIII-metal-diene complexes. The extended Hückel calculations on CpTaCl_{2} (butadiene) and CpTa(butadiene) 2 have corroborated these features characteristic of the Ta-diene bonding in 1,2 , and 3 .

1
$\stackrel{2}{2}$
09.3-22 ASYMMETRIC BONDING OF THE 1-SYN SUBSTITUTED ALLYL MOIETY in 4 CO-ORDINATE PALladuum(II) COMPLEXES

Nicholas W. Murrall and Alan J. Welch Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh. EHG 3TT U.K.

The complexes [Pd(TMEDA) (1-syn-Ph-C $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4}\right)\right] \mathrm{BF}_{4}$ and $\left\{P a(T M E D A)\left(1-\right.\right.$ Syn $\left.\left.-C(0) O E 亡-C_{3} H_{4}\right)\right]$ see $F i g .1$.
 structurally characterised.

$X=P h, C O O E t$

Fig. 1.
Despite the similar steric requirements of the two substituents the bonding of the two $n^{3}-A l l y l$ fragments is not identical. In the $1-\mathrm{Ph}$ derivative the end carbon bearing the substituent is further from the metal, whereas the $\mathrm{x}=\mathrm{C}(0) \mathrm{OEt}$ it is more closely bound. The origins of this will be traced to the modifications in the allyl frontier orbitals as a function of substituent.
09.3-23 CRYSTAL and molecular structures with a ditron cenTER. By H. Font-Altaba, X. Solans, J. Ros and R. Mathieu. Dept. de Cristal.lografia, Univ. Barcelona, GranVia 585 (Barcelona-i1) and Dept. Quínica Inorgànica, Univ. Autònoma Barcelona, Bellaterra (Barcelona).

Five crystal structures with a diiron centre have been solved from X-ray diffraction data.

1. . $\left(\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{C}\left(\mathrm{C}(0) O \mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{C}(0) 0 \mathrm{CH}_{3} \mathrm{C}(0) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{H}\right)\right)\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right)\right.$ $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Monoclinic, $\mathrm{P}_{1} 1 / n, a=17.244(6), b=23.419(7), c=12.218(5)$ $\beta=94.31(4)^{0}, \quad V=4920(5) \mathrm{A}^{3}, \quad Z=4$. Solved by direct methods using the MULTAN system of computer programs and refined by full-matrix least square. R final $0.080(R y=0.090)$.
2. $\left(\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{H}\right)\left(\mathrm{P}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right)\right.$. Triclinic, P1, $a=15.397(5), b=14.495(4), c=11.258(4), \alpha=107.3(3)^{0}, \beta=96.9(2)^{0}$, $Y=110.8(3)^{\circ}, \gamma=2168(2) A^{3}, 3572$ reflections. Solved by direct methods with the Mulitan systen of computer programs and refined by full-matrix least squares. R final 0.075 ($\mathrm{R} \boldsymbol{\mathrm { H } = 0 . 0 7 7 \text {) . }}$
3. $\left(\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{COC}_{2} \mathrm{H}_{5}\right)\left(\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{H}\right)\right.$. Monoclinic, $\mathrm{P} 2 / \mathrm{I}$. $\mathrm{a}=$ $17.801(3), \quad b=10.006(2), \quad c=12.971(2), \quad \hat{y}=106.0(2)^{\circ}, \quad V=2220(1) \quad A^{3}$, $Z=4,2325$ reflections. Solved by heavy aton nethod and refined by full-matrix least squares. ifinal 0.051 ($\mathrm{A} \boldsymbol{\mathrm { H } = 0 . 0 5 4 \text {). }}$
4. $\left(\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right) \mathrm{CC}\left(\mathrm{CF}_{3}\right) \mathrm{C}\left(\mathrm{CF}_{3}\right)\right.\right.$. Monoclinic, $\mathrm{P}_{1} / \mathrm{m} . \mathrm{a}=17.43 \mathrm{~B}$ $b=13.776(2), c=7.703(1), \beta=106.7(2), V=1773(4) A^{3}, Z=4,1701$ reflections. Solved by heavy atom method and refined by full-matrix least squares. R final 0.069 ($\mathrm{R}=\mathbf{0} \mathbf{0 . 0 6 6)}$)
5. $\left(\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)\right)\left(\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{H}\right) \cdot 0.5\right.$ $\mathrm{H}_{2} 0$. Monoclinic, $\mathrm{C} / \mathrm{c}, \quad \mathrm{a}=32.138(2), \quad \mathrm{b}=8.559(1), \quad \mathrm{c}=22.203(3)$, $\beta=107.2(2)^{\circ}, \quad 2=8,1331$ reflections. Solved by direct methods using the MULTAN system of computer programs and refined by full-matrix least squares. R final 0.055 (Ru=0.053).

The Fe~Fe bond distance varies from 2.457(1) in structure 5) to 2.635(1) in 3); bond interections has been observed in the five structures.

