THE CRYSTAL STRUCTURE OF OECACARBONYL[ETS = [OIPHENYLPHOSFHINO)ETHYLAMINE]TRIRUTHENIUM Ey L. Subramony, D.W. Engel and K.E. Moodley, Depertments of Physics and Chemistry, University of Durban-Westville, Private Bag x54001, Durban, 4000, South Africa.
[RH3 $\left.(\mathrm{CO})_{10}\left\{\left(\mathrm{C}_{8} \mathrm{H}_{5}\right]_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\}\right]$ was prepared by dissolving $R U_{3}(\mathrm{CO})_{12}$ and the specially prepared ligand
in cyclohexane and irradiating with UV light. The prod= uct was isolated on a silica gel column and recrystall= ised from a dichloromethane-hexane mixture.

The unit cell of the complex is triclinic, space group Pl with dimensions $a=14.732, b=12.386,-c=10.982 \%$, $\alpha=104.52, \beta=100.64$ and $\gamma=94.89^{\circ}$, and $Z=2$.
5169 independent reflections were measured using Moka radiation on a Philips PW 1100 diffractometer. The structure was solved by Patterson and Fourier methods and refined by blocked full-matrix least squares to a residual of 0,054 for 300 parameters and 3537 reflect= ions with $\mathrm{I}>50$ (I).
The effect of the Iigand is to shorten the bridged Ru-Ru bond from 2,854 to $2,798 \AA$. The two trans axial phenyl groups on the phosporus atoms cause the two neighbour ing axial carbanyl ligands to tilt away from them and the pair of exial carbonyl ligends on the third Ru atom to rotate considerably from the normal to the Ru plane in order to maintain acceptable non-bonded distances.
09.3-25 COMPARATIVE SIRUCIURAL STUDIES OF BINUCLEAR RHODIUM IRIDIUM COMPIFXES WITH (HCl) AND ($\mu-\mathrm{H}$) IIGANDS By A.Albinati,H.Iehner and I.M.Venanzi, Institute of Pharmaceutical Chemistry, University of Milano, Italy. and Laboratorium fur Anorganische Chemie, EIH Zurich, Switzerland.

The crystal structures of the following series of related Rh(I)-Ir (III) compounds have been determined:

$$
\begin{equation*}
\left[\left(E 亡_{3} P\right) 2^{\left.\mathrm{Rh}(\mu-\mathrm{Cl})\left(\mu-\mathrm{H}_{1}\right) \mathrm{IrH}_{2}\left(\mathrm{PE}_{3}\right)_{2}\right]}\right. \tag{ㄹ}
\end{equation*}
$$

$\left[\right.$ (diphos) $\mathrm{Ph}(\mu-\mathrm{Cl})(\mu-\mathrm{H}) \operatorname{IrCl}\left(\mathrm{PEt}_{3}\right)_{3}{ }^{+}{ }^{+} \mathrm{BF}_{4}{ }^{-}$
$\left[(\text { diphos }) \mathrm{Rh}(\mu-\mathrm{Cl})(\mu-\mathrm{F}) \operatorname{IrH}\left(\mathrm{PE}_{3}\right)_{3}\right]^{+}{ }^{-1}{ }_{4}^{-}$ diphos $=\left[(\mathrm{Ph})_{2} \mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph})_{2}\right]$.

The coordination geometry around the Rh atom is square planar; that around the Iridium is distorted octahedral with two phosphine ligands in axial positions and the third $P E t_{3} g r o u p$ trans to the $\mu-\mathrm{F}_{\mathrm{H}}$ ligand in 2 and 3. The Rh-Ir distances show systematic differences (2.899 (1) \AA in $1,2.903(1) \AA$ in $2,2.969(1)$ in 3) reflecting a change in the $M-M$ interactions as a function of the electron densities at the metal centers, which, in turn, are influenced by the nature of the coordinated ligands. Systematic variations in the values of the Rh-Cl-Ir bond angles and Ir-P bond lenghts will also be discussed. The asymetry in the Ir-Rh-P angles (145.11(6) and 116.99° (8) in 1 r $152.64(2)^{\circ}$ and $122.36(6)^{\circ}$ in $2,155.09(3)^{\circ}$ and $122.04(\overline{9})^{\circ}$ in 3) suggests the presence of asymmetric μ-H bridges. This assumption is supported, in compound 2 , by the experimental localization of the F atom and its lsq refinement.
09. 3-26 3 :NEUTRON DIFFRACTION STUDIES OF $\mathrm{Fe}(\mathrm{CO})_{3}\left[\eta^{3}: \eta^{2}-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}-\mathrm{C}-0\right]$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left[\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$: CHARACTERIZATION OF AN UNUSUAL π-ALLYL, σ-ARYL, π-OLEFIN SYSTEM.* By I. Bkouche-Waksman, + J.S: Ricci, Jr.,§ T.F. Koetzle, Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 USA; J. Weichmann and W.A. Herrmann, Institut für Anorganische Chemie, Johann Nolfgang Goethe Universitat, D-6000 Frankfurt-am-Main 50 BRD.

Single-crystal neutron diffraction studies of the title compounds have confirmed that $\mathrm{Fe}\left(\mathrm{CO}_{3}\right)\left[\eta^{3}: \eta^{1}-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right){ }_{2} \mathrm{C}-\mathrm{C}-0\right]$ (I), formed by photolysis of diphenylketene in the presence of iron pentacarbonyl, is transformed upon irieversible thermal decarbonylation into the $\pi-a l l y l$, o-aryl, π-olefin complex $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left[\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ (II). The unusual bridging organic ligand in (II) is related formally to diphenyl carbene by transfer of a phenyl ring proton to the carbene carbon atom. Crystal Data. Compound (I): space group $P \bar{l}, Z=4, a=8.852(2)$, $\mathrm{b}=11.571(4), \mathrm{c}=14.558(6) \mathrm{A},{ }_{2} \alpha=106.94(2), \quad B=89.76(2)$, $\gamma=91.94(2)^{\circ}$ at $T=15 \mathrm{~K} \cdot \mathrm{R}\left(\mathrm{F}^{2}\right)=0.08$ for 5206 independent reflections with $(\sin \theta) / \lambda<0.69 \AA^{-1}$, and 578 variable parameters. Compound (II): space group $\mathrm{P} 21 / \mathrm{a}, \mathrm{Z}=4$, $a=8.298(3), \quad b=12.463(6), \quad c=17.380(3) A, \beta=97.95(1)^{\circ}$ at $T=230 \mathrm{~K} \cdot \mathrm{R}\left(\mathrm{F}^{2}\right)=0.11$ for 2622 independent reflections with $(\sin \theta) / \lambda \leq 0.69 \mathrm{~m}^{-1}$, and 335 variable parameters.
*Research at Brookhaven National Laboratory carried out under contract with the U.S. Department of Energy. tPermanent Address: University of Paris VI, Laboratory of Systematical Chemistry, Paris 75005 France.
Spermanent Address: Department of Chemistry, University of Southern Maine, Portland, ME 04103 USA.
09. 3-27 THE CHARACTERIZATION OF THE μ-CYCLOPROPYLIDENE AND METHYL CYCLOPROPYLIDENE DIIRON COMPLEXES $\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CCH}_{2} \mathrm{CH}_{2}\right)$ AND $\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)$. MODEL INTERMEDIATES FOR HYDROCARBATION AND FISCHER-TROPSCH MECHANISMS. By Gerald B. Ansell and Susan Leta, Analytical Division, and ETvin L. Hoel, Corporate Research Science Laboratories, Exxon Research and Engineering Company, Clinton Township, NJ 08801.

The structures of the first reported cyclopropylidene complexes, the stable diiron complexes
$\left(7_{5}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CCH}_{2} \mathrm{CH}_{2}\right)(\mathrm{A})$, and
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)(\mathrm{B})$, will be described. They were synthesized as mode 7 compounds during the investigation of hydrocarbation and Fischer-Tropsch synthesis mechanisms. (A), crystallized from ether, is orthorhombic, Pnma a $=$ $13.008(77), b=14.126(71), \underline{c}=7.836(2 \pi, Z=4$, $R=0.032, R_{W}=0.037 .(B)$, crystallized from hexane, is monoclinic, $P 2_{1} / \mathrm{n}$ a $=8.884(3), \mathrm{b}=$ $11.601(3), C=15.021(4), \beta=-102.84(10), Z=4$. $R=0.070, R_{2}=0.076$. Both clusters possess an Fe 2 backbone with $\mathrm{Fe}-\mathrm{Fe}$ distances of 2.504 av $(\pm 2$) bridged by a $\mu-c a r b o n y 1$ and one carbon atom of a cyclopropylidene ring. In both compounds each iron is also bonded to a linear carbonyl and a cyclopentadienyl ring, which are in cis configuration with respect to the plane of the bridging ligands. Corresponding bond lengths within the materials are similar and will be compared. The major differences in the geometries of the cluster relate to the mirror plane found in (A) and the lack of such symmetry resulting from the methyl substitution on the cyclopropylidene ring in (B).

