tions to the I_{D} by comparing the XRDS intensity at equivalent points in reciprocal space. On the contrary, scattering contributions due to static displacements of the atoms were neglected, since they were evaluated as being on the order of a few 0.1% of the measured intensity.
As a result, the $I_{\text {OW }}$ data were well fitted by the monotonic Von Lave scattering function $I_{C W}=$ $\left(f_{G a^{-f}} f_{A I}\right) x(1-x)$ with $f_{G a}$ and $f_{A I}$ as scattering factors of Ga and AI atoms, respectively, This result shows that Ga and Al atoms, in IPE GaAlAs crystals, are distributed in the cation $\mathbb{F C C}$ sublattice in a completely random way. Moreover, the possibility of using XRDS experiments to investigate the atomic arrangement within the substituted sub-lattice in III-V solid solutions has been demonstrated. Recent investigations of phase separation and clustering criteria (see e.g. Stringfellow G.B., J. Electronic Materials 11, 903 (1982)) indicate that XRDS investigations on pseudobinary alloy semiconductors, such as InGaAs and InGaAsP, can be of great interest.
11.6-1 X-RAY POLARIZATION BY BRAGG DIFFRACTION FROM BENT AND FLAT CRYSTALS. By J. Zahrt, Chemistry Dept., \#orthern Arizona University, Flagstaff, AZ 85011, USA

Recently much attention has been given to the utilization of polarized X-rays in X-ray fluorescence spectrometers (R. Ryon, et.al., Adv. in X-Ray Anal., 25, 63 (1982)). The introduction of the extra scattering event to polarize the beam decreases the intensity. 90° scattering from the interior of a cylinder wall increases the intensity by utilizing a manifold of beams. This paper concerns itself with the development of a phenomenological theory, based on the mosaic model, to serve as a quide to developing better X-ray optics for Bragg scattered polarized X-ray spectrometers. The improved efficiency of the bent crystal (Johann) over the flat crystal has two sources. One is purely geometric and depends on the collimator(s) length l, and radius T, the radius of the Rowland circle R, and the displacement of the isotropic source from the Rowland circle e. The other source of improvement arises from the mosaic block size t, and from the mosaic distribution function here assumed to be Gaussian with standard deviation of $\eta / \sqrt{2}$. In the approximation of negligible true absorption and 1° and 2° extinction the theoretical results depend only upon geometry.

For $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ diffraction from $\mathrm{Cu}(113)$ and $\mathrm{l}=1 \mathrm{~cm}, \mathrm{e}=0.88 \mathrm{~cm}$, $R=1.5 \mathrm{~cm}$ and $\tau=0.15 \mathrm{~cm}$ the reported efficiency ratio is bent/flat~3 (P. Hobrauschek, personal comm.). Using these parameters and t and η equal to 0.0001 cm and 0.031 rad (flat) and 0.00075 cm and 0.002 rad (bent) I calculate the ratio to be 3.3. Taking the t's 20 times Targer and the $\eta^{\prime} \mathrm{s} 2$ times larger gives 4.2. Taking $\ell=e=0$ and the first set of crystal parameters gives 6.9.

I hope these results will be an aid in the construction of better spectrometers and encourage the determination of the mosaic parameters.
11.6-2 A TWO-CRYSTAL X-RAY INTERFEROMETER OF DIFFERENT SILICON MATERIALS. By P. Becker, Physikalisch-Technische Bundesanstalt, Braunschweig, Federal Republic of Germany.
It has been shown that an X -ray interferometer consisting of two crystals cut from different silicon materials can be successfully operated. Experiments of this kind are of particular interest if lattice spacings of different crystals are to be measured on the meter scale, or if more space in the interfering beam paths is needed. Each of the two crystals shown in the figure belongs to a complete Laue-case interferometer tested separately in order to measure the homogeneity of the crystal lattice. The first crystal, bearing both the beam splitter S and the mirror M, was part of the scanning X-ray interferometer used for the absolute determination of the (220) lattice plane spacing (Becker, Dorenwendt, Ebeling, Lauer, Lucas, Probst, Rademacher, Reim, Seyfried, Siegert, Phys. Rev. Lett. (1981) 46, 1540). The second crystal with the analyzer A belongs to an interferometer cut in a similar way for the same purpose. The relative difference in the Bragg-plane spacings of the two silicon materials was about $(3 \pm 7) \times 10^{-8}$, measured by crystal-to-crystal comparison experiments (Becker, Seyfried, Siegert, Z. Phys. (1982) B 48, 17).

The geometrical deviations of the interferometer from the ideal shape caused by the manufacturing process are thoroughly investigated. In order to align the lattice planes of the two crystals parallel to one another by light optical means, the crystal surfaces are polished to form optical mirrors. Spacing marks are etched on the mirrors in order to realize equal distances between the three lamellas, S, M and A, by use of an optical length measuring device. Only a low interference contrast of so. 05 was observed in the outgoing beams. The reason for this is mainly the difference in thickness of more than $100 \mu \mathrm{~m}$ between the beam splitter S and the analyzer A .

